

Aerobic Granular Sludge Technology

Tatiana Mazzei Project Applications Engineer

Overview

- History of Aerobic Granular Sludge
- What is Aerobic Granular Sludge?
 - Attributes
 - Granule Formation
- AquaNereda Process & Operation
- Comparison of AquaNereda vs. Other Processes
- Demonstration Facility and Pilot Units
- Installations Worldwide and in the U.S.
- Summary

History of Aerobic Granules

First North American AGS Plant Start-up

(Foley, AL)

From The Netherlands to the United States

First Municipal
AGS Plant
(South Africa)

First AquaNereda
Pilot in North America

2020

Demo Facility
Operation Begins

78 Nereda® Plants Worldwide

Nereda® Plants Worldwide

AquaNereda® in the U.S.

Rockford, IL
Capacity (Ave) 0.2 MGD
Capacity (Max) 0.4 MGD

Whitefish, MT
Capacity (Ave) 2.0 MGD
Capacity (Max) 6.0 MGD

Wolf Creek, AL Capacity (Ave) 3.5 MGD Capacity (Max) 6.0 MGD

Idaho Springs, CO Capacity (Ave) 1.0 MGD Capacity (Max) 2.0 MGD

Kahului Airport

Maui, HI
Capacity (Ave) 0.08 MGD
Capacity (Max) 0.08 MGD

Wolcott, KS
Capacity (Ave) 2.0 MGD
Capacity (Max) 6.0 MGD

Aerobic Granular Sludge Technology

Technical Overview

AQUA-AEROBIC SYSTEMS, INC.

Definition

"Granules making up aerobic granular activated sludge are to be understood as aggregates of microbial origin, which do not coagulate under reduced hydrodynamic shear, and which subsequently settle significantly faster than activated sludge flocs."

- True microbial biomass
- Aerobic granular sludge's SVI5 comparable to SVI30 of conventional activated sludge
- Minimum particle diameter of 200 μm

Conventional Activated Sludge vs. Granule Structure

Conventional Activated Sludge

Aerobic Granular Sludge

Conventional Activated Sludge vs. Granule Structure

Conventional Activated Sludge Mixed Microbial Community

Aerobic Granular Sludge
Layered Microbial Community

FISH Analysis

AQUA-AEROBIC SYSTEMS, INC. A Metawater Company

(Fluorescence In Situ Hybridization)

GAO: Glycogen Accumulating Organism

NSO: Nitrifying Organisms

PAO: Phosphate Accumulating Organisms

AQUA-AEROBIC SYSTEMS, INC.

Granular Structure

- Granules are not perfectly spherical
 - Complex structures with voids and channels
 - Allows penetration of nutrients into larger particles

Szabo, E., Liebana, R., Hermansson, M., Modin, O., Persson, F., Wilen, B. M., . . . Department of Chemistry and Molecular Biology. (2017). Microbial population dynamics and ecosystem functions of Anoxic/Aerobic granular sludge in sequencing batch reactors operated at different organic loading rates. *Frontiers in Microbiology*, 8 doi:10.3389/fmicb.2017.00770

AQUA-AEROBIC SYSTEMS, INC

Settleability

- Excellent settling properties
- Increased MLSS

AQUA-AEROBIC SYSTEMS, INC. A Metawater Company

Selection Mechanisms

- 1. Hydraulic selection for fast-settling particles
- 2. Biologic selection of EPS-forming microorganisms

Hydraulic Selection

- Selective wasting
- Wash out smaller particles
- Dense granules settle faster than CAS
- Decreased settling time

AQUA-AEROBIC SYSTEMS, INC. A Metawater Company

Biologic Selection

- Select for PAOs which secrete EPS
- EPS is the chemical backbone of the granule
- Dense bacterial gathering allow rapid settling

AQUA-AEROBIC SYSTEMS, INC. A Metawater Company

Biologic Selection

- Granules are settled at the bottom of the reactor
- Influent is introduced into the granule bed
 - High F/M ratio
- Anaerobic conditions

AquaNereda®

Operational Description

AQUA-AEROBIC SYSTEMS, INC

Process Overview

- Simple, one-tank reactor concept
- No secondary clarifiers
- Enhanced biological nutrient removal
- Timed cycle flexibility
- No sludge recirculation

AQUA-AEROBIC SYSTEMS, INC. A Metawater Company

Simplified Flow Diagram

Process Cycle

- Excellent settling properties
- Up to 75% smaller footprint
- Up to 50% energy savings
- Increased capacity
- Sustainable, robust technology
- No support media
- No bulking sludge
- Chemical savings

Source: T.R. Devlin Aerobic Granular Sludge Presentation

Up to 75% Footprint Reduction

Garmerwolde WWTP, NL

AQUA-AEROBIC SYSTEMS, INC.

Up to 50% Energy Savings

Garmerwolde WWTP, NL

Significant Chemical Savings

Chemical	Unit	A/B system		Nereda		
		2014	2015	2014	2015	2016
Fe	ton	119	130	25	8	0
Coagulant	ton PEactive	39	30	-	-	-
Flocculant	ton PEactive	8.4	7	-	-	-
PAC	kgal	38	37	-	-	-
C-source	kgal	189	159	-	-	-

In 2015, 8 ton of Fe was used during storm events.

In 2016, the operator better managed the system and used no Fe

AQUA-AEROBIC SYSTEMS, INC

Process Robustness

- Displays robustness during less-favorable conditions:
 - Salinity fluctuations
 - Toxic shock
 - Chemical spikes
 - pH fluctuations
 - Load variations

Conventional activated sludge and aerobic granular sludge with shock addition of 5,000 ppm NaCl after 5 min of settling.

AquaNereda®

Process Comparison

Comparison

5-Stage BNR System

Comparison to Typical Multi-Stage BNR System

Process Comparison

Footprint

Process Comparison

Energy

Process Comparison

20-Year Life Cycle Cost

^{*}R. Reardon, et. al., "Can Innovative Technologies Provide Benefits to Municipal Water Resource Recovery Facilities." 2016

AquaNereda®

Operations

AquaNereda® Operations Typical System Components

- Aeration system
- Pumps
- Valves
- Internal process piping
- Wier assembly
- Instrumentation
- Controls

AquaNereda® Operations

AQUA-AEROBIC SYSTEMS, INC. A Metawater Company

Mechanical/Maintenance

Inside the Tank:

- Fine air bubble diffusers

Outside the Tank:

- Pumps
- Valves
- Blowers
- Instrumentation
 - Probes (pH, DO, ORP, TSS)
 - Analyzers (Phosphorus, Ammonia)

AquaNereda® Operations

AQUA-AEROBIC SYSTEMS, INC. A Metawater Company

Process/Laboratory

Operations:

- SVI
- MLSS
- Sieve analysis (bi-weekly)

Laboratory:

- BOD/COD
- Ammonia
- Phosphorus
- TSS

AquaNereda® Demonstration Facility

Rockford, IL USA

AquaNereda® Demo Facility

Rockford, IL

AquaNereda® Demo Facility

AQUA-AEROBIC SYSTEMS, INC

Reactor

- Capacity: 200,000 gal/day
- Volume: 94,250 gallons
- Dimensions: 30 ft (L) x 20 ft (W)
- Depth: 21.0 ft
- Sludge Holding Tank: 15,000 gallons

AquaNereda® Demo Facility

AQUA-AEROBIC SYSTEMS, INC. A Metawater Company

Average Performance Since Start-up

Parameter	Influent (mg/L)	Effluent (mg/L)
COD	223	23
sCOD	88	14
BOD_5	150	5
TSS	144	9
Total N	26	4.9
NH ₄ -N	14	0.6
Total P	2.55	0.5
UVT	36%	76%

AquaNereda® Demo Facility High Load Operation

Parameter	Influent (mg/L)	Effluent (mg/L)
COD	628	41
TSS	210	10
TN	58.8	6.0
Total P	3.4	0.44

Flow: 0.3 - 0.35 MGD

AquaNereda®

US Installations

AquaNereda® Projects

U.S. Installations

- Wolf Creek, Alabama
 - Start-up: Jan. 2020
- Whitefish, Montana
 - Detailed Design
- Maui Airport
 - Detailed Design
- Idaho Springs, Colorado
 - Detailed Design

Wolf Creek - September 2018

Summary

AquaNereda® Summary

- AGS reduces footprint, increases capacity and reduces energy
- Achieves BNR and Bio-P removal
- Easy to operate
- Full-scale plants, demo facility and pilots to assist in design validation and regulatory approval
- Installations around the world, with many coming soon to the U.S.

Questions?