Cutting the Electric Bill by $18,600 a Month
Northwest Regional Water Reclamation Facility
Fox Lake, IL

Wisconsin Wastewater Operators Association
Wisconsin Dells, WI
October 10, 2012

Greg Droessler, P.E.
Clark Dietz Inc.
Village of Fox Lake

Fox Lake

Lake County

Project Location
Village of Fox Lake

Northwest Regional Water Reclamation Facility
Cutting Energy Costs

Goal: Focus on the big ticket items!

- **Aeration / Biological Process Changes**
 - Conventional Activated Sludge vs. MLE System
 - High speed turbo blowers w/ D.O. Controls
 - Fine bubble membrane diffusers

- **Biogas Fueled Generator**
 - Offsets power demand at the main feed
Biological Process

What is driving the project?

- **Existing 9 MGD plant expanded to 12 MGD**
 - Replace 20+ year old equipment as part of the facility upgrades

- **Biological Nutrient Removal (BNR) required**
 - Chemical phosphorus removal
 - Modified Ludzack-Ettinger (MLE) for Total Nitrogen reduction
MLE Process

- What is an MLE system?
 - BNR process primarily for Total Nitrogen reduction
 - Designed for TN removal below 10 mg/L
Biological Nutrient Removal

- In addition to the blower change, the plant will begin to operate the MLE process.
- No aeration in the first tank to create an anoxic zone = less oxygen demand.
Reduction in Aeration Demand

- Conventional Activated Sludge: 10,540 scfm
 - Required 2-400 HP blowers

- MLE Design: 6,100 scfm
 - Requires 1-200 HP blower
Existing Blowers / D.O. Control

- **Size:** 4-400 hp centrifugal blowers
- **Flexibility:** Inability to throttle flow, inoperable D.O. Control system
- **Inefficient:** 3-4 times the required D.O. levels in the aeration basins
High Speed Turbo Blowers

- High Speed Turbo Blowers have become an increasingly popular choice.
- Achieving air demands with less horsepower.
- Using D.O. controls and VFD drives to minimize the amount of air used.
Why High Speed Turbo Blowers?

- Lower horsepower on the motor [200hp]
- Ability to meet full range of air flows
- Provide just the air needed, 2 mg/L vs. 5-8 mg/L D.O.
- **Bottom Line: Lower energy bill each month!**
Fine Bubble Diffusers

- It’s not just blowers for aeration savings, new fine bubble membrane diffusers were added.
 - Replace 20-year old ceramic disk diffusers
 - Increase the transfer efficiency from 20-25% SOTE to 35% SOTE
Aeration Savings

- Annual Electric Savings: 2,956,500 kWh
- Estimated Annual Cost Savings: $190,000
 - Nearly $16,000 / month in savings (blowers)
 - About $13,000 / month in actual savings (subtract the mixer / recycle pump HP)

![Annual Energy Use](chart1.png)

![Annual Energy Cost](chart2.png)
Biogas Utilization

- About 40,000 cu. ft. / day in wasted biogas
 - Increased mixing = increased biogas production
 - Will run a 150 kW biogas generator

Goal: Put the wasted gas to use!
Biogas Utilization

- Dual-feed boilers
 - Digester heating
 - Building heat
- Engine generators
Is running a biogas generator worth it?

- 150 kW x 24 hr. = 3,600 kWh / day
 - This equals about $250 / day
 - $7,500 / month in power savings

- Running at 75% of the time, this equals $67,500 per year in savings
Project Costs

- Aeration / Biological System Upgrades (blowers, mixers, diffusers, and D.O. Controls = $1.7 mil.
 - $307,831 DCEO grant for the project
 - Projected payback = 7.5 years

- Biogas Utilization Project (generator, biogas conditioning, piping and electrical = $763,000)
 - $200,000 DCEO grant for the project
 - Projected payback = 10 years
Total Savings

- Average Electric Costs: $50,000/mo.*
 - Blower / Aeration Savings: $13,000/mo.*
 - Biogas Generator Savings: $5,600/mo.**
 - Projected savings: $18,600/mo.*

- 38% electrical savings annually.

* Using an average cost of $0.07 / kWh
** Based on 1,500 hours of operation / year
Questions.....?