
Phosphorus Removal — Operations and Spreadsheets

Wisconsin Wastewater Operators Association 45th Annual Conference La Crosse, WI October 5, 2011

Tom Crouse Eric Lynne

Outline

- Reason for Phosphorus Removal
- Sources of Phosphorus
- Chemical Removal
- Chemistry of Phosphorus Removal
- Metal Salt MSDS Review

Reason for Phosphorus Removal

- Clean Water Act
- NPDES Permit
 - Reduce environmental harm
 - Cause of Algal Blooms
 - Low Dissolved Oxygen Causes Fish Kills
 - Stream Degradation
 - Hypoxia in Gulf of Mexico

Current Phosphorus Issues

■ NR 217 Promulgated ~1993

Standardized 1 mg/L TP Limit Statewide

2010 Revision Establishes

- Water Quality Based Limits (WQBLs)
- Total Maximum Daily Load Allocations
- Adaptive Management
- Trading?

2010 Revisions

WQBLs

- 0.100 mg/L TP for Large Streams
- 0.075 mg/L TP for Small Streams

TMDLs – Possible Limits

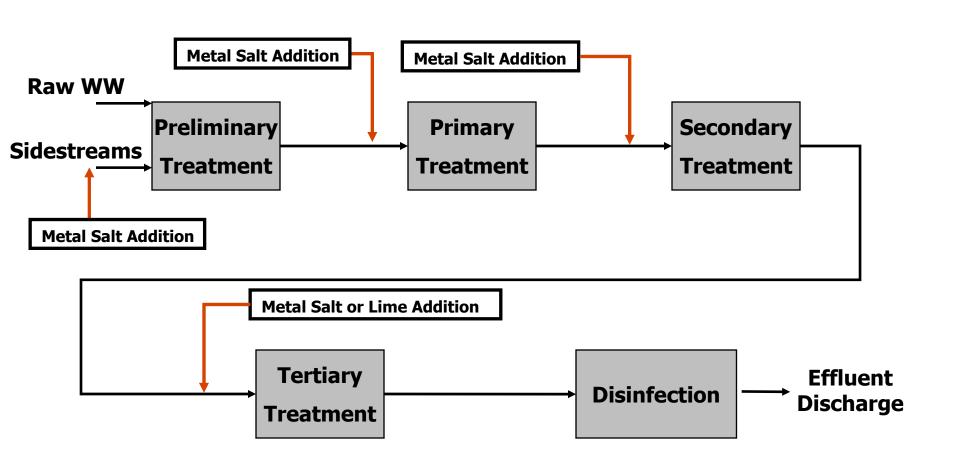
- 1.0 mg/L TP in When Already Meeting Criteria
- 0.4-0.6 mg/L TP Likely Range Through TMDL
 Process When Not Meeting Criteria
- Up to 9 (+???) Years to Comply

Effluent Phosphorus Comprised of Two Main Components

- Phosphorus Tied Up in Solids Particulate Phosphorus (PP)
- Phosphorus in Solution Soluble (Reactive)
 Phosphorus (SP)

$$TP = PP + SP$$

Phosphorus Removal As We Know It


Standard Treatment

- Chemical Phosphorus Removal (Chem P)
- Enhanced Biological Phosphorus Removal (Bio-P, EBPR) with Chem P Backup

Both Approaches Involve Same Strategy

- Convert SP to PP
- Remove PP with TSS (in Sludge or Effluent Filtration)

Typical Chemical Phosphorus Removal Options

Common Metal Salts Added

Iron

- Ferric Chloride/Sulfate (Fe⁺³)
- Ferrous Chloride/Sulfate (Fe⁺²)
 - > Pickle Liquor
 - > Vivianite Issues

Aluminum

Aluminum Sulfate/Alum (Al⁺³)

Commonly Assumed Phosphorus Removal Capabilities

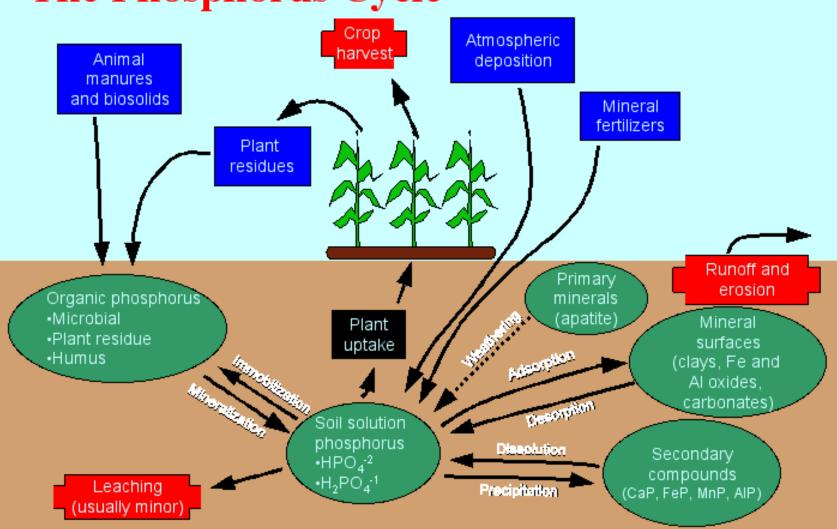
No Effluent Filtration

- Chemical P Removal: 0.5 mg/L TP
- Bio-P: 1.0 mg/L TP

With Effluent Filtration

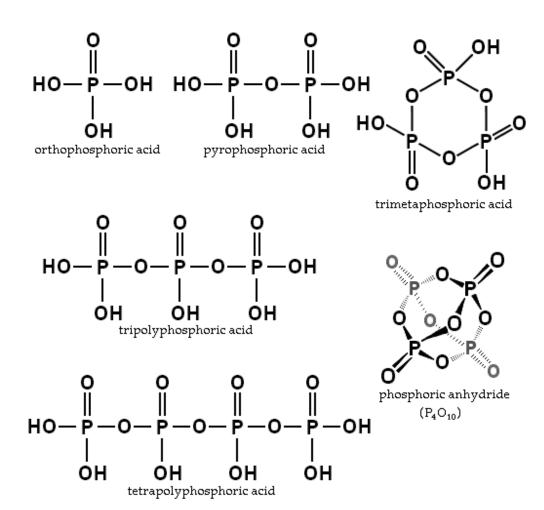
- Chemical P Removal: 0.1 mg/L TP
- Bio-P: 0.3-0.5 mg/L TP

Chem/Bio-P Plus Tertiary Treatment


- Water Treatment Systems: 0.05 mg/L TP
- Iron Filters or R/O: 0.01-0.02 mg/L TP

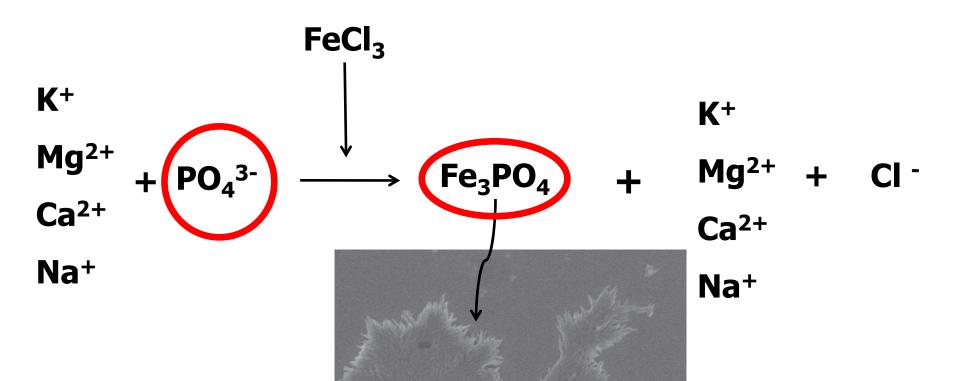
The Phosphorus Cycle

Effects of Excess Phosphorus in Wastewater Effluent



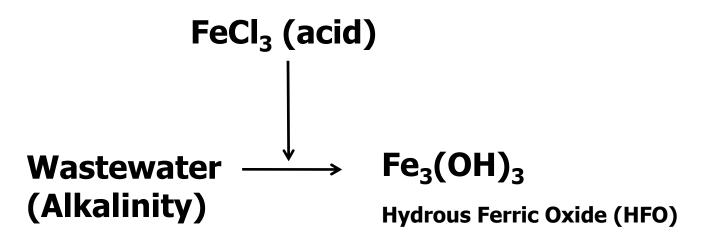
Phosphorus in wastewater occurs in three forms:

- Organic Phosphate
 - Phosphate bound to plant or animal tissue.
- Inorganic Phosphate
 - Polyphosphate (particulate P)
 - Not associated with organic material.
 - Eventually convert to orthophosphate.
 - Orthophosphate (phosphoric acid)
 - Inorganic P, used by organisms.

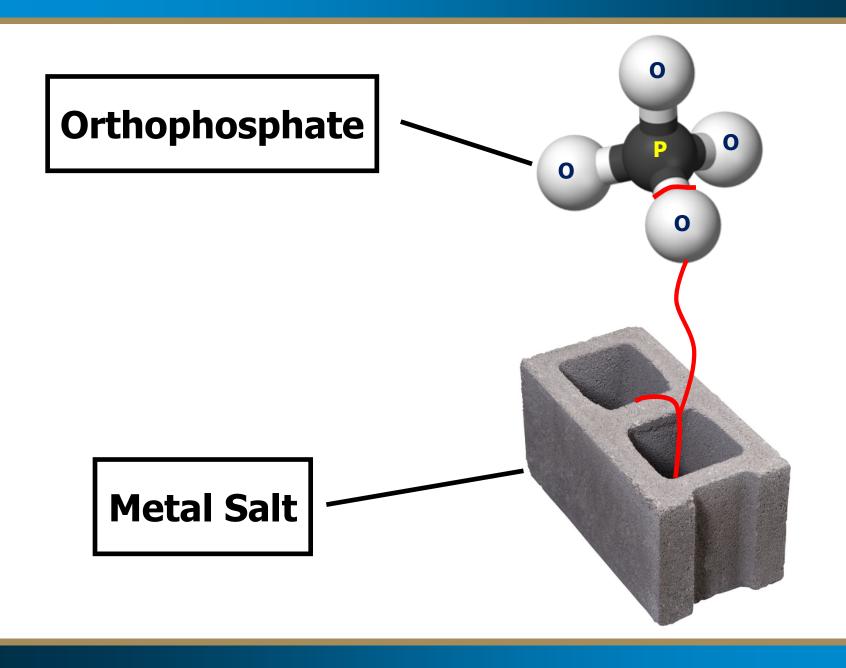


When the molecules disassociate, an orthophosphate ion (PO_4^{3-}) is formed.

Three common chemicals used:

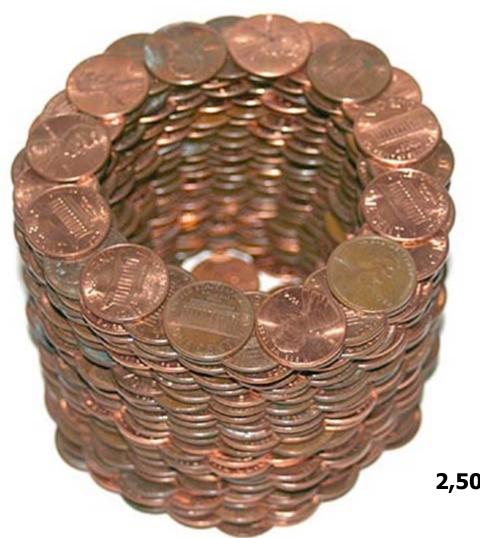

- $Alum Al_2(SO_4)_3 \cdot 14 H_2O$
 - $Al_2(SO_4)_3$ $14 H_2O + 2PO_4^{3-} -> 2AlPO_4 + 3SO_4^{2-} + 14 H_2O$
- Ferrous Sulfate FeSO₄ · 7 H₂O
 - $3(FeSO_4 \cdot 7 H_2O) + 2PO_4^{3-} -> (Fe_3PO_4)_2 + 3SO_4^{2-} + 21 H_2O$
- Ferric Chloride FeCl₃
 - $FeCl_3 + PO_4^{3-} -> Fe_3PO_4 + 1.5 Cl_2$

Chemistry of Phosphorus Removal Ferric Chloride



Scott Smith, Wilfrid Laurier University

Chemistry of Phosphorus Removal Ferric Chloride



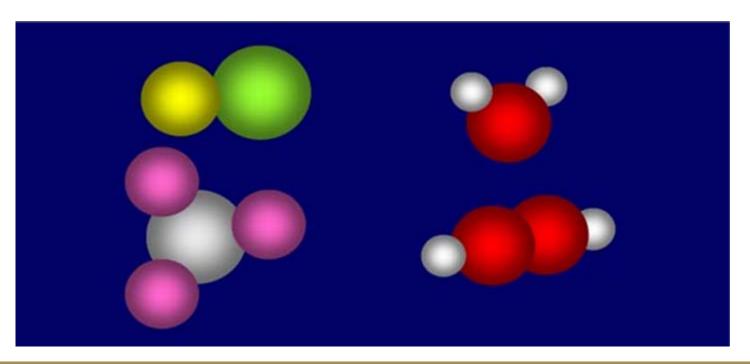
Reduces alkalinity

An easy way to count lots of things.

When counting a pile of coins, it would time consuming to count them one by one.

A smarter strategy is to weigh them. If you know the mass of a penny, then you can count them without counting them.

For example, let's say a penny weighs 2.5 grams. If this stack weighed 2,500 grams, then that means this stack contains 1,000 pennies.


2,500 grams x <u>1 penny</u> = 1,000 pennies 2.5 grams

At the molecular level, there are only whole numbers.

Atoms combine in simple ratios

1:1, 1:2, 2:2, 3:1, etc.

There are no fractions.

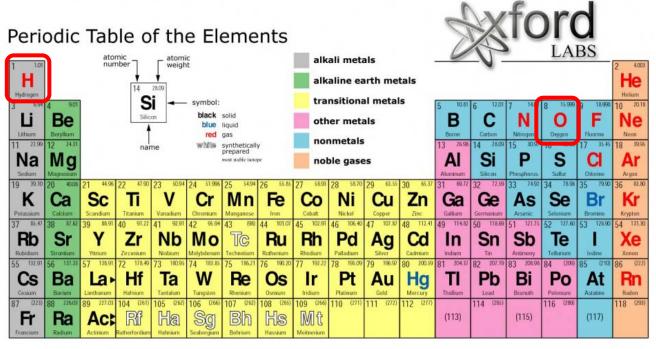
What is a mole (mol)?

The mol is the name for a really big number:

- 602,200,000,000,000,000,000,000

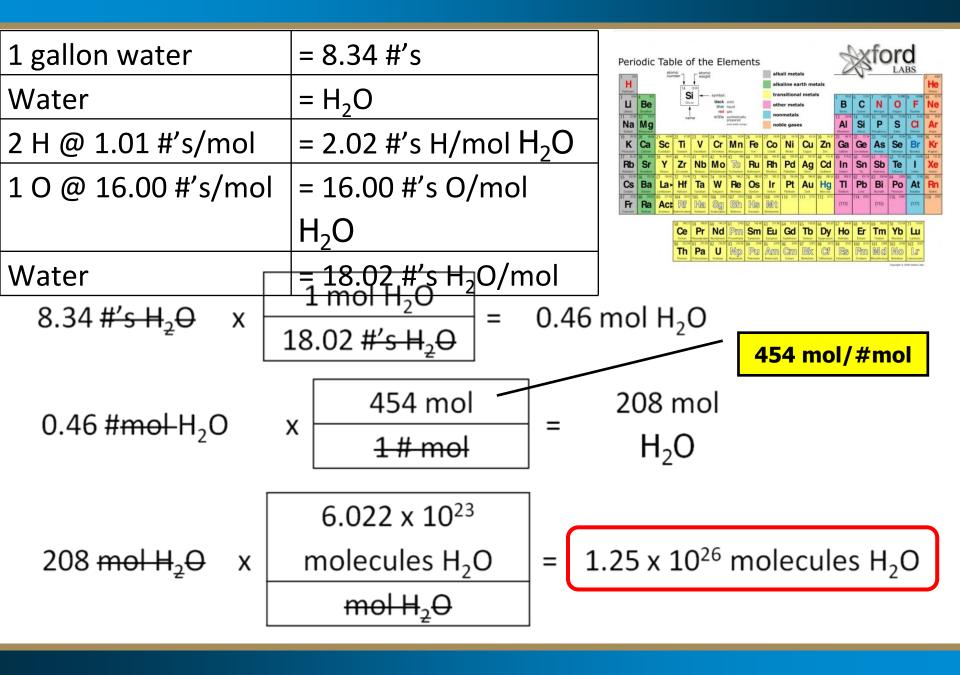
602 sextillion 200 quintillion

• 6.022 x 10²³


Why do we need to know what and how big a mol is?

- Molecules are really, really small.
- We can't measure just one or two molecules.
- We like to work with units such as pounds and gallons.

How many molecules of water are in a gallon?


Converting #'s of water to molecules of water.

- We need to know a few things:
 - Atomic weight of H
 - Atomic weight of O
 - H = 1.01 #'s/mol
 - O = 16.00 #'s/mol

58	140.12	59 140.91	60 144.24	61 (145)					66 162.50			69 168.93	70 173.04	71 17497
	Се	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb	Lu
	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium	Dysprosium	Holmium	Erbium	Thulium	Ytterbium	Lutetium
90	232.04	91 231.04	92 238.03	93 237.05	94 (244)	95 (243)	96 (247)	97 (247)	98 (251)	99 (252)	100 (257)	101 (260)	102 (259)	103 (262)
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr
	horium	Protactinium	Uranium	Neptunium	Plutonium	Americium	Curium	Berkelium	Californium	Einsteinium	Fermium	Mendelevium	Nobelium	Lawrencium

Copyright © 2009 Oxford Labs

Biological Assimilation

- Biological assimilation is the amount of phosphorous necessary for biological growth.
 - BOD:P ratio is 100:1
 - Influent BOD 220 mg/l for a P of 2.2 mg/l
- If influent phosphorous is 7.6 mg/L:
 - -7.6 mg/l 2.2 mg/l = 5.4 mg/l

Typical municipal influent phos. ranges from 5 - 10 mg/L

Enough with the math! How's this spreadsheet thing work?

- Some information needs to be gathered:
 - Influent Phosphorous
 - Influent Flow
 - Influent BOD
 - Bill of lading

Metal Salt Additon for Phosphorus Remova Based on % Metal

The following calculator gives a theoretical amount of chemical to add to remove a desired amount of phosphorus.

Determine the amount of influent BOD in pounds.

2.00 N	AG _	200 mg 800	١ ـ	8.34 L • Fa	١.	3,336	€s BOD
day		Liter		gallon • MG	_	d	*y

Determine the amount of P needed for biological assimilation in pounds. 100 #s BOD : 10 #s N : 1 #s P

day * 100 Fx BOD day	3,336 Fx BOD		1	ø P		33	# s P
	day	*	100	#x BOD	-	d	wy

Determine the amount of P to be chemically removed in pounds per day.

133 #x P	1	33 Fs P assim		100 #'s P to chemically remove
day	1 -	day	-	day

Determine the amount of # mol P to be chemically removed per day.

	day	x	30.97	#P	•		day		
Stands - Contractor & and another to account the second or active of a standard to the									

ine # moi metal needed to remove P based on molar reso of metal to P.

3.23 # mol P to remove	_	1.8 # mol metal		_	5.82	# moi metal	П
day		1.0	€ mol P	1 -		day	_

Determine pounds of metal needed per day

5.82 # mol metal	7 -	55.85	#'s metal		324.86	#'s metal	ı
dev	1 * 1	1	# mol metal	-	dev		ı

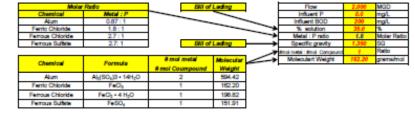
Determine the #'s of solution based on bill of lading % needed per day.

325 Fa metal @ 100%	x	100	€s soin		2,509 #'s sofn
day		12.5	#s metal	1 •	day

Determine gallons of metal sait solution needed per day.

2,599	€s soin	_	1	gallon	_	1	SG softs	_	231	gal. sol'n
day		×	8.34	Fx		1.350				day

Step 10. Determine gallons of soi'n needed / hour.


231 gallsofn		x	1	сжу	9.02	gai sorn
791	and and by	1		don	0.00	and andia

Step 11. Determine milititers of metal soit soi'n needed per minute.

9.62	gal sol'n	_	3,780	mL	1 _	1	hour	_	606	mL sofn
hour		×	1	gallon	x	60	minutes	1 .	m	inute

Metal Salt Additon for Phosphorus Removal Based on % Solution

The following calculator gives a theoretical amount of chemical to add to remove a desired amount of phosphorus.

Step 1. Determine the amount of influent phosphorus in pounds.

2.00 MG	8.0 mg P	8.34 L • Fx	ا ۔ ا	133 Fx P	
day	Uter	gallon • MG		day	

Determine the amount of Influent BOD in pounds.

2.00 MG	_	200 mg BOD	_	8.34 L • Fa	_	3,336 Fs BOD	1
day		Liter		gallon • MG	-	day	1

Determine the amount of P needed for biological assimilation in pounds. 100 #s BOD : 10 #s N : 1 #s P

3,336 #s BOD		1	₽ P	 33	#sP
day	*	100	#x 800	d	lary

Determine the amount of P to be chemically removed in pounds per day.

133 Fx P	33 Fa Passim	_	100 #'s P to chemically remove
day	day	-	day

Determine the amount of # mol P to be chemically removed per day.

						_
100 Fs P to chemically remov	1.00	# mol P	_	3.23	# mol P to remove	1
day	30.97	₽ P	-		day	1

Determine # mol metal needed to remove P based on ratio of metal to P.

3.23 # mol P to remove	_	1.8	# mol metal	۱ ـ	5.82	# moi metal
day		1.0	∉ mol P			day

Determine the # mol of solution needed / day.

5.82 # mol metal	_	 # mol metal compound 	_	5.82	# mol metal compound	ı
dity	•	1 # mol metal	-		day	1

Determine the #'s of solution @ 100% needed / day.

5.82 # mol metal compound	_	162.20	#compound		943	#s compound @ 100 %
day	×	1.0	# mol metal compound	-		day

Determine the #'s of solution @ bill of lading % needed / day.

943 #s compound @ 100%		100	€ sofn	2,696 #s sol'n
day	x	35.0	#compound	day

Step 10. Determine gallons of metal sait solution needed per day.

2,696	€s soin	_	1	gallon	_	1 50 softs	1 _	239	gal. sol'n
d	ay	*	8.34	Fx	*	1.380	1 -		day

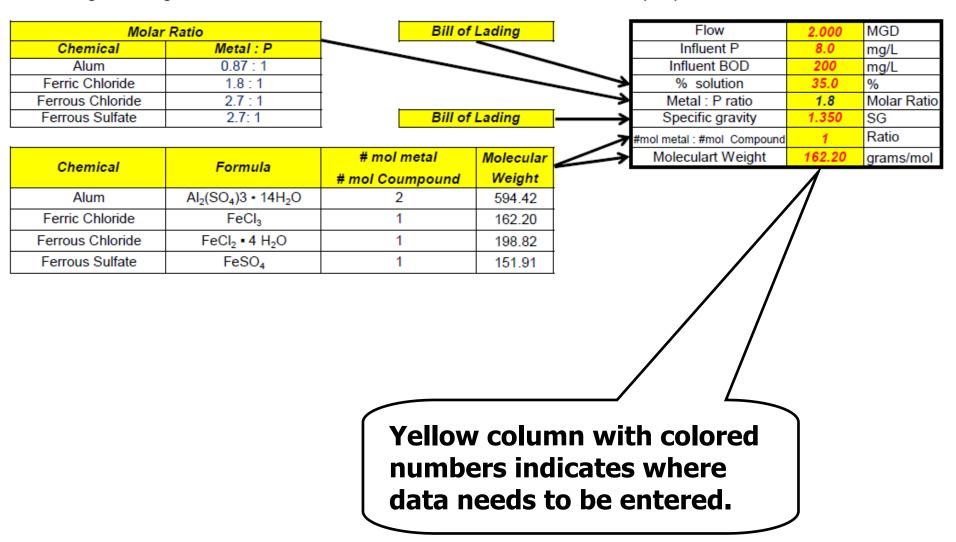
Step 11. Determine gallons of soi'n needed / hour.

990	1	_	dia.			and an Br
239 gal sorn		1	ожу		9.96	gai sorn
day	1 *	24	hours	_	-	our

Step 12. Determine milliliters of metal soit soi'n needed per minute.

9.98 gal sofn	_	3,780	mL	1	hour	١.	628	mL sofn
hour	•	1	gallon	60	minutes	_	m	inute

Important!


- •% Metal?
- •% Solution?

Bill of Lading

CUST NO.	Mun/		legibly fitted in, in ink, in and retained by the Age		DUE 0		SHIP DATI
		H	AWKINS, I	NC	07/22/		07/22/11
	ORDER NUMBER	3100 M	EAST HENNEPIN A INNEAPOLIS, MN 50 (612) 331-6910	VENUE 5413	BIL	LOFLA	DING NO.
			(012) 33110910		SHIP	FRON 3	Pi 12
FOR HE	ELP IN CHEMICAL EMERI	GENCIES INVOL	VING SPILL, LEAK, FI	RE OR EXPOSURE C	ALL CHEMTRI	EC at 1-	900-424-930
P 3000	MAR CITY OF SWATER THEATHERT 75TH STREET MAR HS 56201	PLT	S O L D	WILLMAR CITY C WASTEWATER THE JOOG 75TH STRE WILLMAR HO 562	MUNICHT PL	T	
		RENCE NO.	SHIPPED VIA	SALESPERS	ON		F.O.B.
VERE	330,1	235,4760	MATRE	JOHN GADBO	13	OH	10110
QUANTITY SHIPPED	PACKAGE		DESCRIP	TION			TITY IN LBS.
	RO TANK WARRON	0923,02	ERRIC CHICRIDS,	EDITOR FOR		NET	GROS
				product every line and		.0000	£8000g
	RIPHED:		THYOTOE - DO HO	TOTAL WEI		90008	180004
	1.50		Justh	de	40		
C of A Rec				HT CHARGES:	PREPAID		COLLEC
PROSINED, subsect to consigned, and death of sighway at earl tier to each party or any to	other discollinations and herita in offices on the act as indicated above, which sustains pre- tribution, if on its rooks, otherwise to deliver to the independent and or any such property, that no first hip to familiar with all the bill at lacking in	Opins of the issue of this little or more manner being understoor arrether carrier on the source every service to be performs:	Litting. The property described above in- if throughout this contract as meaning any is said detaination. It is mutually expreed if homospher shall be uniforcity of the bit	expensed good order, except as noted to a parace or corporation in passession of earlie each content of all or any of said of all falling ferms and conditions in the	projects and condition of the property projection occupanty over all or any o projecting classification	contests of pa- contests agree online of east to deep of a	diagos (attorows), re- o to cally to its social outer of destination a frame/s.

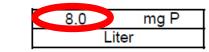
Metal Salt Addition for Phosphorus Removal Based on % Solution

The following calculator gives a theoretical amount of chemical to add to remove a desired amount of phosphorus.

Step 1.

Remember the pounds formula?

Flow	2.000	MGD
Influent P	8.0	mg/L
Influent BOD	200	mg/L
% solution	35.0	%
Metal : P ratio	1.8	Molar Ratio
Specific gravity	1.350	SG
#mol metal : #mol Compound	1	Ratio
Moleculart Weight	162.20	grams/mol


MGD X mg/L X 8.34 #'s/gallon

Χ

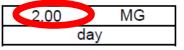
Step 1. Determine the amount of influent phosphorus in pounds.

X

8.34	L • #'s
gallon • MG	

133	#'s P
day	

Step 2. Pounds formula again.


Flow	2.000	MGD
Influent P	8.0	mg/L
Influent BOD	200	mg/L
% solution	35.0	%
Metal : P ratio	1.8	Molar Ratio
Specific gravity	1.350	SG
#mol metal : #mol Compound	1	Ratio
Moleculart Weight	162.20	grams/mol


MGD X mg/L X 8.34 #'s/gallon

Χ

Step 2. Determine the amount of influent BOD in pounds.

Х

3,336	#'s BOD
day	

Step 3.

Nutrient Ratio #'s BOD:N:P

Χ

100:10:1

Flow	2.000	MGD
Influent P	8.0	mg/L
Influent BOD	200	mg/L
% solution	35.0	%
Metal : P ratio	1.8	Molar Ratio
Specific gravity	1.350	SG
#mol metal : #mol Compound	1	Ratio
Moleculart Weight	162.20	grams/mol

#'s BOD ÷ 100

Step 3. Determine the amount of P needed for biological assimilation in pounds. 100 #'s BOD : 10 #'s N : 1 #'s P

3,336	#'s BOD
day	

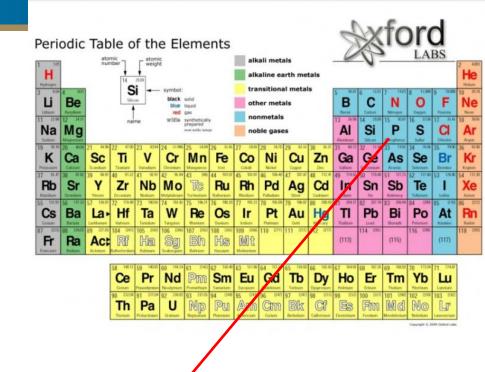
1	# P
100	#'s BOD

Step 4.

Determine pounds of phosphorus to be chemically removed per day.

Flow	2.000	MGD
Influent P	8.0	mg/L
Influent BOD	200	mg/L
% solution	35.0	%
Metal : P ratio	1.8	Molar Ratio
Specific gravity	1.350	SG
#mol metal : #mol Compound	1	Ratio
Moleculart Weight	162.20	grams/mol

#'s Influent P - #'s P needed for bugs


133	#'s P
day	

33	#'s P assim
day	

100	#'s P to chemically remove
day	

Step 5.

Determine # mols of phosphorus to be chemically removed per day.

#'s P ÷ Atomic Weight of P

Х

100	#'s P to chemically remove
day	

1.00	# mol P
30.97	# P

3.23 # mol P to remove day

Step 6.

Determine # mols metal needed to remove P based on ration of metal to P.

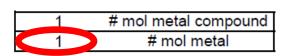
Flow	2.000	MGD
Influent P	8.0	mg/L
Influent BOD	200	mg/L
% solution	35.0	%
Metal : P ratio	1.8	Molar Ratio
Specific gravity	1.000	SG
#mol metal : #mol Compound	1	Ratio
Moleculart Weight	162.20	grams/mol

#mol P x (#mol metal/#mol P)

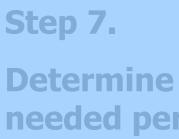
3.23	# mol P to remove
day	

1.8	# mol metal
1.0	# mol P

5.82	# mol metal
	day

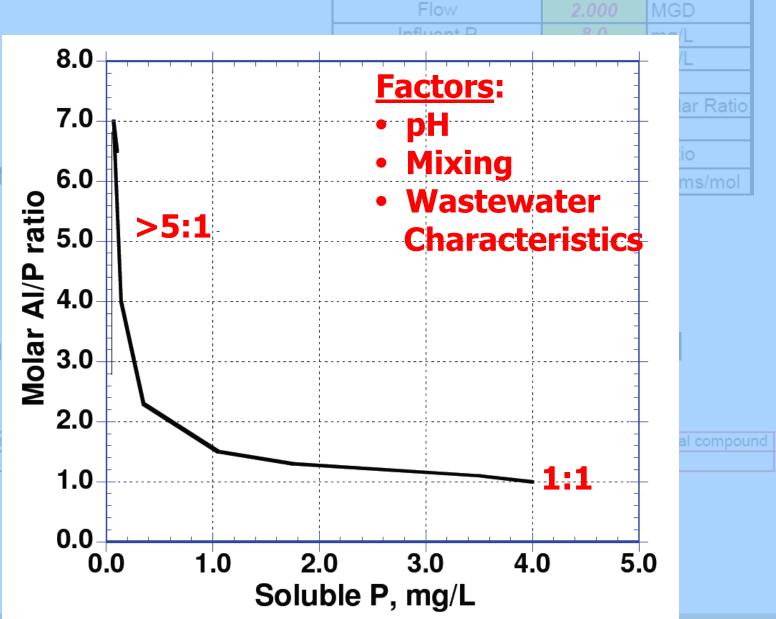

Step 7.

Determine # mols solution needed per day.


Flow	2.000	MGD
Influent P	8.0	mg/L
Influent BOD	200	mg/L
% solution	35.0	%
Metal : P ratio	1.8	Molar Ratio
Specific gravity	1.350	SG
#mol metal : #mol Compound	1	Ratio
Moleculart Weight	162.20	grams/mol

#mol metal x (#mol metal compound/#mol metal)

5.82	# mol metal
day	



5.82	# mol metal compound
	day

#mol m metal)

5.82 # mol

Step 8.

Determine # solution at 100% needed per day.

Х

Flow	2.000	MGD
Influent P	8.0	mg/L
Influent BOD	200	mg/L
% solution	35.0	%
Metal : P ratio	1.8	Molar Ratio
Specific gravity	1.350	SG
#mol metal : #mol Compound	1	Ratio
Moleculart Weight	162.20	grams/mol

#mol metal compound x (#'s compound/#mol metal compound)

5.82	# mol metal compound
day	

162.20	# compound
1.0	# mol metal compound

943	#'s compound @ 100 %
day	

Step 9.

Determine #'s solution at bill of lading % needed per day.

Flow	2.000	MGD
Influent P	8.0	mg/L
Influent BOD	200	mg/L
% solution	35.0	%
Metal : P ratio	1.0	Molar Ratio
Specific gravity	1.350	SG
#mol metal : #mol Compound	1	Ratio
Moleculart Weight	162.20	grams/mol

#compound @ 100% ÷ # compound bill of lading %

943	#'s compound @ 100%
day	

100	# sol'n
100	11 30111
35.0	# compound
Joint	# compound

2,696	#'s sol'n
day	

Step 10.

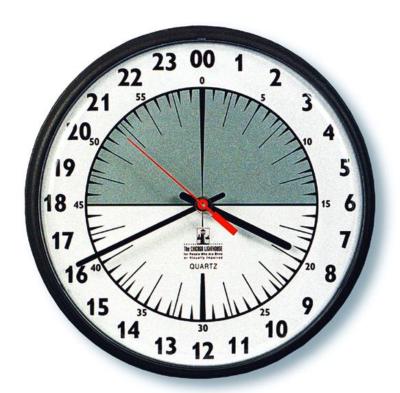
Determine gallons of metal salt solution needed per day.

Х

Flow	2.000	MGD
Influent P	8.0	mg/L
Influent BOD	200	mg/L
% solution	35.0	%
Metal : P ratio	1.0	Molar Ratio
Specific gravity	1.350	SG
#mol metal : #mol Compound	1	Ratio
Moleculart Weight	162.20	grams/mol

#sol'n ÷ 8.34 # ÷ 1.350 SG

Χ


2,696	#'s sol'n	
day		

1 gallon 8.34 #'s 1 SG sol'n 1.350

239	gal. sol'n
day	

Step 11.

Determine gallons of solution needed per hour.

gal sol'n/day ÷ 24 hours/day

Х

239	gal sol'n
day	

1	day
24	hours

=

9.98	gal sol'n
hour	

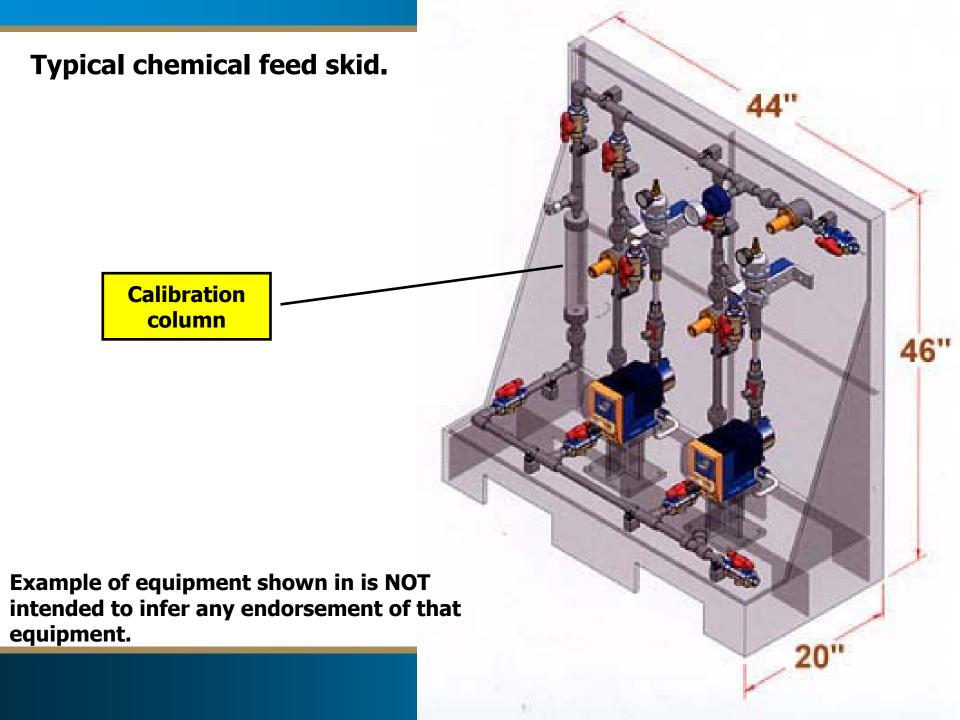
Step 12.

Determine milliliters of solution needed per minute.

Χ

gal sol'n/hour x 3,780 mL/gal ÷ 60 min/hour

9.98	gal sol'n
hour	


3,780	mL
1	gallon

1	hour
60	minutes

628	mL sol'n
minute	

The following calculator gives a theoretical amount of chemical to add to remove a desired amount of phosphorus. BNI of Lading mg/L mg/L Alum 0.87:1 Influent BOD Ferric Chloride % solution % Moler Ratio Ferrous Chloride Metal : Piratio BNI of Lading Ferrous Suitate Specific gravity SG Patio oi metai : Broi Conpo Molecular Moleculart Weight Chemical Formula Weight Alum Al₂(80₄)3 • 14H₂0 594.42 162.20 Ferric Chloride FeCi₃ Ferrous Chloride FeCi; • 4 H₂O 198.82 Ferrous Suifate FeSO₄ 151.91 Step 1. Determine the amount of influent phosphorus in pounds. **Inputs** 8.34 L • Fs gallon • MG Determine the amount of Influent BOD in pounds. Step 2. Determine the amount of P needed for biological assimilation in pounds. 100 #s BOD : 10 #s N : 1 #s P €x BOD Determine the amount of P to be chemically removed in pounds per day. 100 Fix P to chemically remove Determine the amount of # mol P to be chemically removed per day. # mol P to remove 30.97 Step 6. Determine 6 mol metal needed to remove P based on ratio of metal to P. € mol P Determine the # mol of solution needed / day. # mol metal compound Determine the #'s of solution @ 100% needed / day. €compound Fs compound @ 100 % Step 9. Determine the #'s of solution @ bill of lading % needed / day. Step 10. Determine gallons of metal salt solution needed per day. **Outputs** Step 11. Determine gallons of soi'n needed / hour. gal soin day gal soin

hour

Metal Salt MSDS Review

Exposure Controls

- Protective eyeglasses or chemical safety goggles.
- Appropriate protective clothing to prevent skin contact.
- Use a NIOSH approved respirator when necessary.

Any Questions?

References

Information for this training module was derived from the following sources:

- Operation of Wastewater Treatment Plants Volume 1 and 2, Office of Water Programs CSU Sacramento
- Advanced Waste Treatment, Office of Water Programs CSU Sacramento
- Wastewater Engineering, Treatment and Reuse, Metcalf and Eddy
- Activated Sludge Microbiology Problems and Their Control, Michael Richard, Ph.D.
- Operator's Pocket Guide to Activated Sludge Part I and II, Stevens,
 Thompson, and Runyan