



# Mixing Guidelines for Biological Nutrient Removal

WWOA Conference 2015

Jim Fischer, PE









### A brief History Submersible Mixers: 50+ Years



- Submersible mixers invented by Flygt and first commercial versions in 1958!
- Photograph of set up with flow guide for ice prevention.





### 1975



### Manure mixing trial Overwhelming results Sparked

- renewed interest
- Re-dedicated effort



#### What we discovered



#### The advantage with submersible mixers:

### - Freedom of Positioning











### 1977

Submersible mixer re-introduced to the world

Four sizes from 1.5 to 20 HP



#### 1992 BNR Market Compact Mixers







#### **Mixer and Agitator Product Line**



a **xylem** brand





#### **Common Mixing Duties**



- Blending soluble liquids
  - Batch mixing
  - Through-flow mixing



#### Suspension

- Re-suspending solids off bottom or drawing down solids from surface crust
- Keeping solids in a homogeneous suspension



#### Circulation

- Providing flow as in Oxidation Ditches



#### Dispersion

 Breaking up and distributing droplets, bubbles or particles







### Mixing goals for BNR:

- 1. Prevent settling
- 2. Prevent short-circuiting
- 3. Force good biological contact
- 4. Minimize energy use



### Repeat distance L<sub>R</sub> or the required number of mixers



$$L_R = 2.5 W - D$$

(SM/JM)

$$L_R = 1.5 \text{ (up to 2) W} \text{ (TEA)}$$





### Multiple impellers in a tall narrow tank



#### Rule of thumb:

Add an impeller each time H/T passes a multiple of 1.25





## Flygt Mixer Positioning Creating Mixing and Bulk Flow



#### Many flows, one source

- Inflow
- Outflow, better known as primary flow
- Jet: initial jet and entrained flow
- Bulk Flow





## Flygt Mixer Positioning Creating Mixing and Bulk Flow









### Flygt Mixer Positioning Mixer Jet



- Jet drives both primary flow and bulk flow
- Jet brings the surrounding liquid into motion
  - The surrounding low-velocity liquid is entrained
  - Majority of the mixing is not in the prop-area
  - Intensive mixing happens along the jet border





## Flygt Mixer Positioning for a bulk flow loop



- 1. Determine an efficient bulk flow loop
- Smooth jet deflection for low losses
- Because mixing happens along the jet border, the longer the jet-path, the more mixing takes place
- This often means the mixers are located in corners
- Locate the mixer(s) so they are directed along the streamlines of the loop
- 3. Aim the jet to steer clear of obstacles



#### **Submersible Mixer Positioning**



## 1. Determine an efficient bulk flow loop





### Submersible Mixer Positioning



## 2. Locate the mixer along the streamline of the loop





## Submersible Mixer Positioning 3. Long jet path





Large fluid entrainment and bulk flow



## Submersible Mixer Positioning 4. Smooth jet deflection



Smooth jet deflection: Yields low hydraulic losses





## Submersible Mixer Positioning Long jet path & smooth deflection











### Submersible Mixer Positioning 5. Away from obstacles



• Pipes, Pillars ...





Bends, Aerators ...





## Submersible Mixer Positioning Optimal positioning



Rectangular tanks

Circular tanks

1/4

Tanks viewed from top





## Submersible Mixer Positioning Rectangular tanks: Single mixer



Aim for 1/4 width for maximum bulk flow

View from top















### Madison, WI Nine Springs WWTP



Anaerobic Selector Basin Dimensions

33' Long 30' wide 17' deep

Madison Metropolitan Sewerage District

### Typical Activated Sludge Layout

#### Typical Conventional Activated Sludge Process



# Grit Removal Fine screens

Added to the plant Enabled lower mixing energy





### Anaerobic Zones Mixer sizing

1996:

7.5 HP - 1.15 ft/sec

2012:

2.5 HP - 0.7 ft/sec

4 HP - 0.85 ft/sec





### Mixing energy Cut in half



### 7.5 HP vs 2.5 & 4 HP



**Before** 



7.5 HP
Before















## Most efficient mixer today: large diameter, slow speed







### Questions?