Biosolids Dewatering Equipment Comparisons

WWOA Annual Operators’ Meeting

October 5, 2015
Common Dewatering Equipment
Belt Filter Press

• Advantages
 • Low power consumption
 • Low polymer consumption
 • Low speed equipment
 • Fewer specialized maintenance requirements
 • High wash water requirements

• Disadvantages
 • Humid and odorous atmosphere
 • Operator Exposure
 • Corrosion Potential
 • Lower cake solids
 • Higher operator attention required
Common Dewatering Equipment
Centrifuge

- Advantages
 - Contained equipment, improved atmosphere
 - High cake solids
 - Low wash water requirements
 - Reduced operator attention required
 - Small footprint

- Disadvantages
 - High power consumption
 - High polymer consumption
 - High speed equipment
 - Potential specialized maintenance requirements
 - Potential for higher centrate solids
Common Dewatering Equipment
Screw Press

• Advantages
 • Low power consumption
 • Low speed equipment

• Disadvantages
 • Humid and odorous atmosphere
 • Operator Exposure
 • Corrosion
 • Lower Cake Solids
 • High polymer consumption
Common Dewatering Equipment
Rotary Fan Press

• Advantages
 • Low power consumption
 • Low speed equipment
 • Low capital cost
 • Low operator attention required
 • High cake solids
 • Low wash water requirement

• Disadvantages
 • High polymer consumption
 • Limited throughput
 • Suitable for smaller installations
Alternative Dewatering Approach
Sludge Drying Beds

• Advantages
 • No power consumption
 • Very low maintenance requirements (facility dependent)
 • Very high cake solids achievable (40%)

• Disadvantages
 • Sometimes labor intensive
 • Weather-dependent operation
 • Space requirement
 • Odor potential
 • Appearance
Illinois WWTP Dewatering Evaluation

- 3.5 mgd design average flow
- Extensive Renovations
 - Remove Primary Clarifiers
 - Expand Aeration Tanks
 - Use Adjacent Aerobic Digester Tanks
 - Convert Anaerobic Digesters to Aerobic Digesters
 - Demolish Sludge Drying Beds
 - Implement Mechanical Dewatering
 - Screw Press Pilot
Screw Press Pilot

- Trailer Mounted Unit
- 12 gpm sludge flow rate
- Aerobically digested sludge
- 3.0% TS feed sludge
- Achieved 22.4% dry solids (average)
- 28 lbs active polymer per dry ton
Centrifuge vs. Screw Press Comparison

<table>
<thead>
<tr>
<th></th>
<th>Screw Press</th>
<th>Centrifuge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Units</td>
<td>2</td>
<td>1</td>
</tr>
<tr>
<td>Flow Rate (gpm)</td>
<td>50</td>
<td>157</td>
</tr>
<tr>
<td>Operating hours/wk</td>
<td>56</td>
<td>18</td>
</tr>
<tr>
<td>Polymer (lb active/ton)</td>
<td>28</td>
<td>15</td>
</tr>
<tr>
<td>Power (each)</td>
<td>2.5</td>
<td>75</td>
</tr>
<tr>
<td>Annual O&M</td>
<td>$112,000</td>
<td>$81,000</td>
</tr>
<tr>
<td>Capital Cost (including equipment, building, storage)</td>
<td>$2,934,000</td>
<td>$3,142,000</td>
</tr>
<tr>
<td>Total Present Worth</td>
<td>$4,079,000</td>
<td>$3,845,000</td>
</tr>
</tbody>
</table>
Wisconsin WWTP Dewatering Evaluation

• 2.3 mgd design average flow
• Heavy Industrial Loads
 • 4,400 lb/day BOD
 • 3,500 lb/day TSS
• Anaerobic Digestion
• Currently Use Belt Filter Press
 • In need of replacement or reconditioning
• Limited Cake Storage Capacity
• Evaluate Replacement Options
 • Recondition Belt Filter Press
 • Centrifuge
 • Rotary Fan Press
Alternatives Comparison

<table>
<thead>
<tr>
<th></th>
<th>Recond. Belt Press</th>
<th>Fan Press</th>
<th>Centrifuge</th>
</tr>
</thead>
<tbody>
<tr>
<td>Polymer (lb active/ton)</td>
<td>22</td>
<td>22</td>
<td>22</td>
</tr>
<tr>
<td>Power (each)</td>
<td>5</td>
<td>2.5</td>
<td>75</td>
</tr>
<tr>
<td>Cake Solids</td>
<td>17.5%</td>
<td>20%</td>
<td>24%</td>
</tr>
<tr>
<td>Additional Storage</td>
<td>Yes</td>
<td>No</td>
<td>No</td>
</tr>
<tr>
<td>Required?</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Annual O&M</td>
<td>$173,000</td>
<td>$121,000</td>
<td>$121,000</td>
</tr>
<tr>
<td>Capital Cost</td>
<td>$551,000</td>
<td>$1,099,000</td>
<td>$1,057,000</td>
</tr>
<tr>
<td>Total Present Worth</td>
<td>$3,204,000</td>
<td>$2,940,000</td>
<td>$2,900,000</td>
</tr>
</tbody>
</table>

Owner Selected Centrifuge
Illinois WWTP Dewatering Evaluation

• 25 mgd design average flow
• Anaerobic Digestion
• 98,000 gpd digested sludge
• Currently Use Belt Filter Presses (3)
 • In need of replacement or reconditioning
• Limited Cake Storage Capacity
• Evaluate Replacement Options
 • Replace Belt Filter Press
 • Centrifuge
 • Screw Press
Alternatives Comparison

<table>
<thead>
<tr>
<th></th>
<th>Belt Press</th>
<th>Centrifuge</th>
<th>Screw Press</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Units</td>
<td>3</td>
<td>2</td>
<td>3</td>
</tr>
<tr>
<td>Flow Rate (gpm)</td>
<td>130</td>
<td>300</td>
<td>225</td>
</tr>
<tr>
<td>Operating hours/wk</td>
<td>88</td>
<td>38</td>
<td>51</td>
</tr>
<tr>
<td>Polymer (lb active/ton)</td>
<td>24</td>
<td>30</td>
<td>35</td>
</tr>
<tr>
<td>Connected Power (hp)</td>
<td>29</td>
<td>182</td>
<td>43</td>
</tr>
<tr>
<td>Cake Solids</td>
<td>16%</td>
<td>23%</td>
<td>21%</td>
</tr>
<tr>
<td>Annual O&M</td>
<td>$1,277,000</td>
<td>$1,126,000</td>
<td>$1,169,000</td>
</tr>
<tr>
<td>Capital Cost</td>
<td>$6,638,000</td>
<td>$5,592,000</td>
<td>$5,347,000</td>
</tr>
<tr>
<td>Total Present Worth</td>
<td>$18,191,000</td>
<td>$15,575,000</td>
<td>$17,033,000</td>
</tr>
</tbody>
</table>
Excellence in Engineering Since 1946