Biogas Utilization Improvements at the West Bend WWTP

Dan Schaefer, PE
Outline:

• Project Background
• Biogas to Energy Opportunity
• Biogas Study
• Design
• Construction
• Operation (1st Year)
• Q & A
Project Background
Background

• Project drivers
 – Increased high-strength waste receiving in 2011
 – Excess digester gas production
 – Desire to utilize a renewable resource to offset WWTP O&M costs
Background

• Project goals
 1. Minimize staff operating requirements
 2. Provide a safe and reliable system
 3. Achieve utilization in the most cost-effective manner
 4. Optimize funding opportunities
 5. Maximize digester gas utilization
Biogas to Energy Opportunity
Biogas to Energy Opportunity

• Why Biogas to Energy?
 – Produce electrical power
 • We Energies will buy-back at $0.155/kWh on peak (9 AM-9PM)
 • Sewer Utility currently pays $0.069/kWh on peak
 • On-Peak Buyback of 2.25 times current purchase rate
 – Offset heating needs
 – Sustainable energy “Green Project”
 – Generate additional revenue
Biogas Utilization Study
Project Goals

1. Minimize staff operating requirements
2. Provide a safe and reliable system
3. Achieve utilization in the most cost-effective manner
4. Optimize funding opportunities
5. Maximize digester gas utilization
Microturbines vs Engines

• Microturbine Advantages Over Engines:
 – One Moving Part
 – No Oil Changes
 – Quiet Operation
 – Compact Footprint
 – Clean
 – 65 kW Capstone Microturbines have a proven installation track record
Biogas Study – Alternatives

<table>
<thead>
<tr>
<th>Biogas Production and Utilization Alternatives for Detailed Evaluation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Alternative No.</td>
</tr>
<tr>
<td>Biogas Utilization Alternatives</td>
</tr>
<tr>
<td>1</td>
</tr>
<tr>
<td>2</td>
</tr>
<tr>
<td>Electrical Power Distribution/Production Alternatives</td>
</tr>
<tr>
<td>A</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>C</td>
</tr>
<tr>
<td>Biogas Storage Enhancement Alternatives</td>
</tr>
<tr>
<td>B1</td>
</tr>
<tr>
<td>C1</td>
</tr>
</tbody>
</table>
Project Goals

1. Minimize staff operating requirements
2. Provide a safe and reliable system
3. **Achieve utilization in the most cost-effective manner**
4. Optimize funding opportunities
5. Maximize digester gas utilization
<table>
<thead>
<tr>
<th>Project Costs</th>
<th>ALT 1A</th>
<th>ALT 1B</th>
<th>ALT 1B1</th>
<th>ALT 1C</th>
<th>ALT 1C1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Estimated Construction Costs</td>
<td>$2,188,700</td>
<td>$2,375,600</td>
<td>$3,835,500</td>
<td>$2,614,300</td>
<td>$4,074,200</td>
</tr>
<tr>
<td>Subtotal Annual Costs</td>
<td>-$107,100</td>
<td>-$177,900</td>
<td>-$392,600</td>
<td>-$345,600</td>
<td>-$483,400</td>
</tr>
<tr>
<td>Estimated Payback Period</td>
<td>20.4 yrs</td>
<td>13.4 yrs</td>
<td>9.8 yrs</td>
<td>7.6 yrs</td>
<td>8.4 yrs</td>
</tr>
<tr>
<td>Net Present Worth of Alternative</td>
<td>$618,800</td>
<td>-$145,700</td>
<td>-$1,571,300</td>
<td>-$2,161,300</td>
<td>-$2,554,000</td>
</tr>
</tbody>
</table>
Selected Alternative 1C

- Estimated Annual Cost Breakdown (at midpoint of 20 year design period – 2022)

<table>
<thead>
<tr>
<th>Description</th>
<th>Cost</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual O&M Cost</td>
<td>$ 60,500</td>
</tr>
<tr>
<td>Annual Natural Gas Cost Savings</td>
<td>-$ 44,500</td>
</tr>
<tr>
<td>Annual Electrical Power Cost Savings</td>
<td>-$ 244,600</td>
</tr>
<tr>
<td>Annual High Strength Waste Hauling Revenue</td>
<td>-$ 117,000</td>
</tr>
<tr>
<td>Total Annual Cost</td>
<td>-$ 345,600</td>
</tr>
</tbody>
</table>
Project Goals

1. Minimize staff operating requirements
2. Provide a safe and reliable system
3. Achieve utilization in the most cost-effective manner
4. **Optimize funding opportunities**
5. Maximize digester gas utilization
Biogas Study - Potential Funding Sources

• We Energies
 – Customer Biogas Generated Systems

• Focus On Energies
 – New Programs were announced on April 2, 2012

• WDNR Clean Water Fund Program
 – FY 2013 Principle Forgiveness – Followed Revised Formula
 – Project Preliminary Priority Evaluation Ranking Form (PERF) Score = 97.449
Design
Design Criteria

<table>
<thead>
<tr>
<th>Unit Process</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>High Strength Waste Receiving Facility</td>
<td>1 – 125 gpm, Rotary Lobe Pump 30,000 gal HSW Receiving Tank (5 Tanker Capacity)</td>
</tr>
</tbody>
</table>
| Gas Conditioning | 230 scfm capacity
Moisture Removal
Biogas Compression to 90 psig
3 – Siloxane Removal Vessels |
| Co-Generation | 4 – 65kW w/Integral Heat Recovery
Total Heat Recovery Capacity:
Approx. 220,000 – 270,000 btu/hr per turbine @ full load (880,000 – 1,080,000 btu/hr total) |
| Digester Boiler/HX Replacement | Replace existing 1,000,000 btu/hr combination boiler/HX |
| Digester and Building Heating Modifications | Connect Microturbine heat recovery into existing Digester Heating loop, and revise Service Building Heating Loop to incorporate Microturbine heat recovery |
Design – Unique Aspects

• High Strength Waste Receiving:
 – PVC Sheet Liner Utilized
 – Utilization of Existing Tunnel for HSW Pump
 – HSW Feed Options
 • Gravity Thickener
 • Digesters
 • Recycle/Tank Mixing
 – Incorporation into existing Digester Feed Operation

• Microturbine Combined Heat & Power (CHP):
 – Grid Connection w/Buyback Agreement
 – Utilization of Existing Spaces
 – Intake Plenum Room
 – Heat Recovery
 • Building Heating
 • Digester Heating
 • Relieve Burden on Digester Boilers
Construction
Construction – Key Elements

• High Strength Waste Receiving Facility
• Replacement of original Digester Boiler/HX (1966)
• New Gas Conditioning Building Housing Gas Conditioning Skid
• Modifications to 1960s Service Building to House:
 – 4 – 65kW Capstone Microturbines
 – Hot Water Recirculation Pumps
 – Electrical Room
 – Microturbine Intake Plenum Room
Construction Challenges

- Underground Utilities
Construction Challenges

• Winter Work
 – Concrete
Construction Challenges

- Winter Work
 - Temporary Heat
 - Enclosures

Building a Better World for All of Us® | Biogas Utilization Improvements at the West Bend WWTP |
Construction Challenges

• Project Schedule
 – Grid Connection
 – Shutdown Coordination
Operation (1st Year)
Operation – 1st Year Timeline

June 2013 - Substantial Completion of CHP System

December 2013 - Boilers Re-Fired

October 2013 - Max HSW Received

March 2014 – Boilers Shutdown

June 2014 – Peak kW-Hr/Day Produced (4,137 kW-Hr/Day)

August 1, 2014 – Cargill Milwaukee Shutdown
Power Production & High Strength Waste Received
June 2013 - July 2014

- kWh/day
- HSW

MONTHLY KWh PRODUCED vs MONTHLY HSW GALLONS RECEIVED

Jun-13 to Jul-14

June 2013 to July 2014
Natural Gas Usage

Microturbine Start-Up
Annual Cost (1st Year)

<table>
<thead>
<tr>
<th>Description</th>
<th>Amount</th>
</tr>
</thead>
<tbody>
<tr>
<td>Annual O&M Cost</td>
<td>$17,130</td>
</tr>
<tr>
<td>Annual Natural Gas Cost Savings</td>
<td>-$5,500</td>
</tr>
<tr>
<td>Annual Electrical Power Cost Savings</td>
<td>-$110,800</td>
</tr>
<tr>
<td>Annual High Strength Waste Hauling Revenue</td>
<td>-$81,100</td>
</tr>
<tr>
<td>Total Annual Cost</td>
<td>-$180,270</td>
</tr>
</tbody>
</table>
Operation & Maintenance

- **Energy Content of Biogas:**
 - 12/7/11 – 639 btu/scf
 - 6/26/12 – 661 btu/scf

- **Siloxane Media Life:**
 - Media replaced 3 times during 1st Year of operation (Approx. $1,700 per replacement)
 - Average 15,000,000 scf between media replacement
 - Average Si concentration downstream of vessels between 0.18 and 0.32 mg/m³
Operation & Maintenance

• Unison Maintenance Trips:
 – CHP System Fault – Flow Setter Adjustment
 – Chiller Fault – Debris
 – Owner Requested HMI/PLC modifications
 – Annual Conditioning Skid & Microturbine inspection and maintenance
Project Goals

1. Minimize staff operating requirements – Microturbines and Gas Conditioning
2. Provide a safe and reliable system – Microturbines and Gas Conditioning
3. Achieve utilization in the most cost-effective manner – HSW Hauling Fees, NG Offset, Power Buyback
4. Optimize funding opportunities – We Energies Interconnection Agreement
5. Maximize digester gas utilization – HSW Receiving
Acknowledgements

• Scott Tutas, Sewer Utility Manager, West Bend Sewer Utility
• Tony Schilling & Kim Murdock-Timmerman, Unison Solutions
• Bryan Lewis, Project Manager, AECOM
Questions?
Thank you!