Not Your Typical Turbo Blower

New Holstein Utilities’ Blower Improvements

Don Lintner (NHU)
Eric Lynne (Donohue)
Background

- New Holstein Utilities
 - Population (~3200)
 - Design
 - Flow (1.33 mgd)
 - Load (1600 ppd BOD)
- Current
 - Flow (0.5 mgd)
 - Load (680 ppd BOD)
Background

- Permit Requirements
 - BOD (20/30 mg/L)
 - TSS (20/30 mg/L)
 - TP (1.0 mg/L)
 - No disinfection

- Operational Practices
 - Extended Air (Nitrification)
 - Septage Receiving (Slugs)
Background

- Aeration Blowers
 - Type - Rotary Lobe
 - Function - Aeration and Digester
 - Condition - End of Useful Life
 - Reliability Concerns
 - Inefficient
Aeration Blowers
 - Operational Limitations
 - Constant Speed
 - 40HP / 30HP
 - Age
 - 2 Failed
 - 2 Used Units

Typically run 70 / 100 HP for 1600 scfm / 2300 scfm (mixing limited)
Facilities Plan

- Blower Replacement
- Ancillary Systems
 - Building
 - Decant Tanks
 - WAS Control
 - Sludge Pumps
 - Standby Generator
 - DO Control
 - Lab Temperature
 - Workshop/Garage Bay
Facilities Plan

- **Blower Replacement Alternatives**
 - Replace In-Kind - Rotary Lobe Blowers
 - Single Stage Centrifugal (Turbo) Blowers

- **Efficiency**
 - Life Cycle Cost Evaluation

- **Upgrade Electrical Service**
 - 230V vs. 480V Power

- **Recommended Further Consideration**
Facilities Plan / Preliminary Design

- Single Stage Centrifugal Blowers
 - High Speed Turbo (Sulzer/APG-Neuros)
 - Specialized Electronics
 - Cost
 - Integrally Geared with Sliding Vane (Turblex)
 - High Capacity / Cost
 - Integrally Geared with VFD (Inovair)
 - New
Inovair Blower

- **Concept**
- **Advantages**
 - Moderate Cost / Efficiency
 - Basic Components
- **Disadvantages**
 - Not Best Efficiency
 - Limited Installations and Experience
 - Milwaukee Industrial Application
 - Rib Mountain (eternally almost complete)
 - Unclear lifespan
Design Concepts

Design:
A. Evaluated Blower Bid
B. D.O. Control
C. Modulating Valve
D. 3-D Model
A) Blower Evaluation

- Evaluated Bid:
 - Rotary Lobe Blowers
 - Inovair

- Early Adopter=Attractive Pricing (and random issues...)

Assumed $0.10/kwh for two blowers operated 24 hours per day, total of 2000 scfm.
B) Dissolved Oxygen Control
C) Modulating Digester Valve

- Concept
 - Throttle digester header when liquid levels are lower to balance airflows
 - Less overall horsepower
 (Note: can’t pinch both ends)

- Allow flexibility to run a dedicated blower(s) to each side
D) 3-D Models

- Design:
 - 3-D Model
 - Pump Gallery - Operator Input allowed ability to pull/push flow every direction
Funding

BIDS

Low Bidder:
- $2,149,000

GRANTS

Aeration Blower:
- Projected Energy Savings ($16,500)

Building Heat:
- Electric Heat → Gas Heat Savings ($7,500)

Grant Value
- $33,976 WPPI
- $68,165 Focus on Energy
- $364,382 CWF Principal Forgiveness

$466,523 Total (22%) → $1,682,477 (net cost)
Construction and Startup Photos

(No trees were harmed on this portion of the project)
Construction and Startup Photos
Valved Flexibility

- Design:
 - Eliminated 1 pump
 - Some flowpaths can flow by gravity or pump
 - Rotary lobe pumps allow multi-use
 - All three can really move some sludge
 - Sacrificed Automation
Operation

- Startup Plan
 - How to sequence blower demo/startup to prove new units are fully functional?
 (...Very Carefully)
Operation

- The Blowers Work!*
 - Designed to typically need 2 blowers

- Now to Optimize
 - Reduce DO
 - Reduce Mixing Limited
 - Reduce Digester Airflow

- Limitations:
 - Blower Turndown (Range 70-100%)
 - Inovair now offers wider-range units, consider varying sizes (or rpms?)
Operation

- Blower PLC Programming
 - Surge Protection Feature
 - Manual reset
 - Head rise to surge worse at VFDmin
 - Ramps up VFD, fights valve PID
Operation

- Blower PLC Programming
 - Mass Airflow - Winter Operation
 - Adjusted PLC Temp Setting
Operation

► Current
 ► Operating smooth now
 ► Maintenance Items:
 ► Expensive Oil
 ► Belt Tensioning
 ► Air Filter
 ► Observed Energy Savings
 ► Average
 ► Peak

![Electric Utility Graph]

3-YRS BEFORE

AFTER
Operation

- Benchmarking
See Focus at Booth #136
Download Guide @
www.focusonenergy.com/guidebooks

<table>
<thead>
<tr>
<th>Facility Type</th>
<th>Flow Range (MGD)</th>
<th>Average Energy Use (kWh/MG)</th>
<th>Top Performance Quartile (kWh/MG)</th>
<th>Best Practice Benchmark (kWh/MG)</th>
<th>Average Potential Savings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Activated Sludge**</td>
<td>0 - 1</td>
<td>5,440</td>
<td>< 3,280</td>
<td>3,060</td>
<td>44%</td>
</tr>
<tr>
<td></td>
<td>1 - 5</td>
<td>2,503</td>
<td>< 1,510</td>
<td>1,650</td>
<td>34%</td>
</tr>
<tr>
<td></td>
<td>> 5</td>
<td>2,288</td>
<td>< 1,350</td>
<td>1,760</td>
<td>23%</td>
</tr>
<tr>
<td>Aerated Lagoon</td>
<td>< 1</td>
<td>7,288</td>
<td>< 4,000</td>
<td>3,540</td>
<td>51%</td>
</tr>
<tr>
<td>Oxidation Ditch</td>
<td>< 1.2</td>
<td>6,895</td>
<td>< 4,000</td>
<td>4,320</td>
<td>37%</td>
</tr>
</tbody>
</table>
Operation

- Benchmarking
 - How does it compare?
 - Data Crunch
 - Keep Updated

- Benchmark - Activated Sludge
 - 5.4 MWh/MGD (average)
 - 3.3 MWh/MGD (Top 25%)
 - 3.0 MWh/MGD (Best Practice)
Operation

- Normalized for Loading
- Heating Impact
 - Summer vs
 - Winter
- Benchmark - Extended Air
 2.9 MWh/MGD

Electric Utility

- 3-YRS BEFORE
- AFTER

kWh / lb BOD
Operation

- Heating Improvements
 - Cost: $40,000
 - Benefit:
 - Reduced OPEX
 - Lab temp control
 - 2-10 year payback without grants
 - Demand charge reductions

Electric and Natural Gas

Heating Degree Days (deg F)

Cost:
$40,000

Benefit:
Reduced OPEX
Lab temp control
2-10 year payback without grants
Demand charge reductions
Operation

- Normalize for BOD and Heating

Blower System Efficiency

34.6 % Reduction
Operation

- Minimized Electric Heat
 (some areas still have electric heat)
Summary

- More than Just a Blower Replacement Project
 - Blowers
 - Continued Optimization
 - Control System
 - Heating System

- Come Visit!