

Biogas: Efficiency through New Technologies

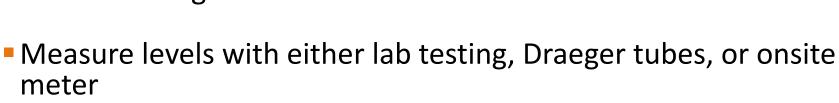
Kim Murdock-Timmerman

Reducing Capital and Maintenance Costs-H₂S Removal

Micro Turbine

IC Engine-Generator

Boiler



Why Hydrogen Sulfide Removal?

- Equipment damage from corrosion (Hydrosulfuric Acid)
- SO_x Emissions
- Health and safety issues (1,000 ppm will cause an individual to lose consciousness)
- Odor control
- Causes fouling of siloxane removal media

HYDROGEN SULFIDE REMOVAL SYSTEMS

- Wood based
- Clay based

Ferric hydroxide pellet (adsorption)

Wausau WWTP, WI

Hydrogen Sulfide Removal Media

- Ferric Hydroxide, FeO(OH)
 - Used on saturated gas
 - Conditioning step Ca to CaCO₃
 - Tolerant of variable or low moisture content
 - Sulfur is pulled into pores and media remains granular
- 2 Fe(OH)₃ + 3 H2S \rightarrow Fe₂S₃ + 6 H2O
- Exothermic reaction when exposed to oxygen

Persigo WWTP, Grand Junction, CO

	Persigo WWTP Summary	
Start Up Date	April 6, 2015	
System Flow	100 scfm	
Inlet H₂S:	3,000 ppmv	
Oxygen:	0.229%	
Moisture:	4-20 mg/l* (*25 mg/l = 100% saturation)	
Vessels:	(2) 8' Ø x 12' ss	

Media Type	Media Cost/Change out	*Estimated days before change out with saturated gas	Actual days before change out (50 ppmv)
SulfaTreat	\$31,394	102	41
Iron Sponge	\$17,442	90	60
UNI-H2S	\$30,500	150	104

Sulfatreat and iron sponge both require 100% saturated gas to operate at their optimum.

*Based on percent by weight removal capacity, assuming optimum conditions

Hydrogen Sulfide Removal Media

Specially activated wood based media

- Remains granular
- Works on saturated gas, but can tolerate lower than 100%
- Low heat up when exposed to oxygen
- Can be used in conjunction with VOC removal media
- Chemisorb reaction takes place inside pores of media

Hydrogen Sulfide Removal Media

St. Landry Solid Waste, LA 1 – 50 scfm & 1 – 100 scfm BioCNG system Specially activated wood based media

- Remains granular
- Works on saturated gas
- Can be used in conjunction with VOC removal media

Reducing Capital and Maintenance Costs

Gas Compression/ Moisture Removal

Micro Turbine

IC Engine-Generator

Boiler

Hydrogen Sulfide Removal Media

- Potassium Iodide, KI impregnated
 - Coal or coconut substrate
 - Used on dry gas
 - Sulfur is pulled into pores and media remains granular
 - Cost effective on <100 ppm H₂S
 - Reduces siloxane concentration

Danville Sanitary District, IL

- Site requirements
 - Limited space
 - Ease in media change out
- Inlet conditions
 - 55 scfm
 - 1000 ppm H₂S
 - FeCl (Ferric Chloride) used in digester
 - H₂S inlet to Unison skid 40-100 ppm
- Siloxane Removal Vessel 1 Klimpregnated media
- Siloxane Removal Vessel 2&3 Coal based siloxane removal media

Reducing Maintenance Costs-Siloxane removal

Micro Turbine

IC Engine-Generator

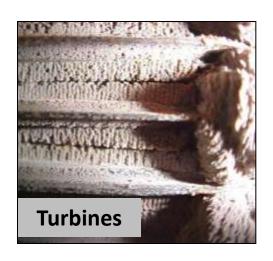
Boiler

What is a Siloxane?

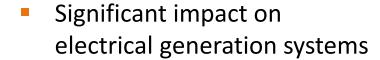
 Silica and organic compounds are combined (Organosilicon)

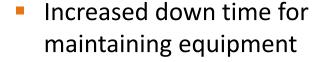
Deicing fluid Shampoo/conditioner

Windshield Cleaning Products Laundry detergents


Silicone caulksFurniture polish

Food additives


Commercial products for washing fruits and vegetables


 Siloxanes break down in landfills and digesters, and combine with the methane gas

Siloxane Impact on Equipment

- When methane gas is used as a fuel, the siloxanes form SiO₂ Silicon Dioxide, and precipitate to a hard deposit on surfaces
- Boilers

- Increased costs for components, i.e. spark plugs, valve seats
- Engine rebuild time is more frequent

Siloxane/VOC Removal

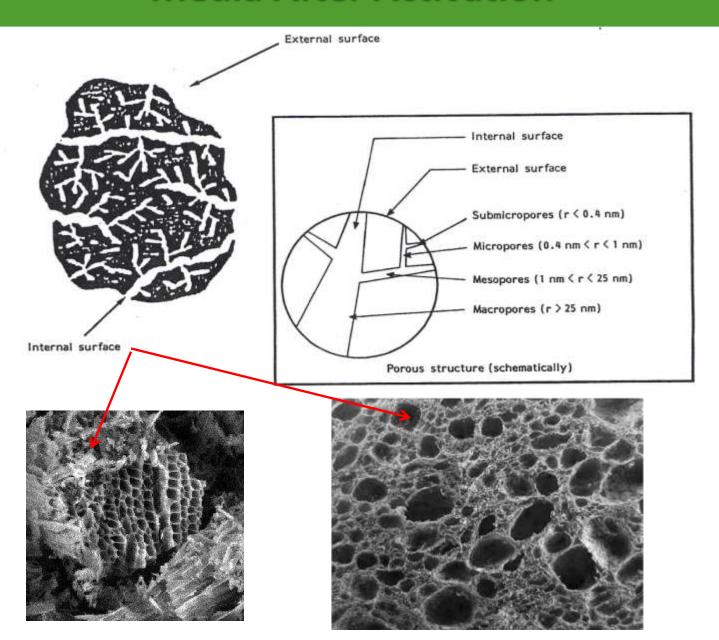
Coal

Coconut shell

Wood

Extruded pellets

4 x 8 mesh chips


Silica gel - spheres

Silica gel – irregular shaped

Media After Activation

Suitability Factors for Media Systems: Inlet Biogas Quality – Siloxanes, Hydrocarbons and VOC's

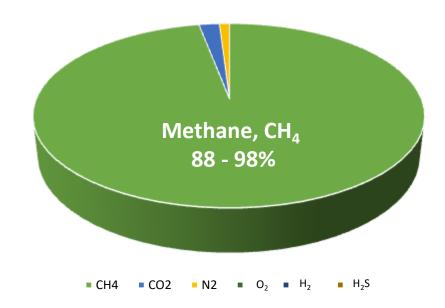
Siloxanes Organic Compounds with Silica		
Tetramethyl silane		
Trimethyl silanol		
Hexamethyldisiloxane (L2)		
Hexamethylcyclotrisiloxane (D3)		
Octamethyltrisiloxane (L3)		
Octamethylcyclotetrasiloxane (D4)		
Decamethyltetrasiloxane (L4)		
Decamethylcyclopentasiloxane (D5)		
Dodecamethylpentasiloxane (L5)		
Dodecamethylcyclohexasiloxane (D6)		

<u>VOC</u> Volatile Organic Compounds (Commonly Found)		
Acetone		
Benzene		
Chlorobenzene		
Decane		
Ethylbenzene		
Heptane		
Hexane		
Isopropyl Alchohol		
Octane		
Xylene		
Toluene		
22-35 compounds typically reported		

Suitability Factors for Media Systems: Siloxanes, Hydrocarbons and VOC's

Benzene
$$C_6H_6$$
 $C C H$ $C C H$

D3, Hexamethylcyclotrisiloxane


L3, Octamethyltrisiloxane

BIOGAS TO VEHICLE FUEL

bi·o·gas, 'bīōˌgas/, noun, gaseous fuel, especially methane, produced by the fermentation of organic matter.

- Methane, CH₄
- Carbon Dioxide, CO₂
- Nitrogen, N₂
- Oxygen, O₂
- Hydrogen Sulfide, H₂S
- Moisture
- Particulates
- Siloxanes
- Volatile Organic Compounds

METHODS TO DELIVER RNG

PERSIGO WWTP GRAND JUNCTION, CO

Startup: April 2015

Gas Conditioning Equipment

- Hydrogen sulfide removal
- Gas compression/ Moisture removal
- Siloxane removal
- Carbon dioxide removal

RANDOLPH FARMS LANDFILL, IN

Startup: Spring 2018

200 scfm

Fast Fill - vehicle fueling

SYSTEM COMPONENTS

- Hydrogen sulfide removal
- Gas compression/ Moisture removal
- Siloxane & VOC removal
- Carbon dioxide removal


Blue Line Transfer - Time Fill

- South San Francisco, CA
- 8 Dry Anaerobic Digesters
 - 11,200 tons of food and green waste diverted per year
- Gas Flow: 100 scfm
- Time Fill CNG fueled waste haulers
- Fast Fill small amount of high pressure storage on site for emergency fill

CAPURE PROCESS

CAPURE TECHNOLOGY

99.9% Methane Efficiency

- Less than 0.1% methane slip
 - Protecting our environment
- No hidden additional cost or energy requirement associated with treating the tail gas
- 99.9% of the methane in the biogas can be sold
 - Always the highest revenue

Thank you!

http://www.energenecs.com/

www.unisonsolutions.com

