Pipeline Management Solutions
Stop Age Discrimination in Pipe Replacement Strategies
Wisconsin Wastewater Operators Association
October 10, 2019
Buried Infrastructure Challenges

Over 240,000 water main breaks per year in the US
Over 900 billion gallons of sewage overflows per year in the US
>$250 billion investment needed for water pipelines within 20 years
>$80 billion investment in wastewater pipelines within 20 years
70% to 90% of replaced pipelines have remaining service life

Sources: ASCE & EPA
THE PURE PRECISION PLAYBOOK
Risk

Likelihood of Failure (LoF)

Consequence of Failure (CoF)

Risk = LoF x CoF
Likelihood of Failure

Pipe Condition
- Material quality
- Manufacturing
- Design
- Environmental
- Operational
- 3rd party damage
- Installation
- Age
Consequence of Failure

Social
• Loss of trust
• Traffic disruption

Environmental
• Creeks and rivers
• Sensitive areas

Economic
• Repairs
• Damage
• Loss of product
Why do Pipes Fail?

- Operational Pressure
- Mechanical Overload
- External Loading
- Weakening of Pipe
- Failure
Cast Iron Pipes
- Cracking from joints (leadite)
- Longitudinal or circumferential cracking
- Graphitization, corrosion and pitting

Ductile Iron Pipe
- Broad areas of corrosion
- Internal or External
Age alone is a poor indicator of condition

36-inch Diameter – Pressure Rated for 150 psi
The Good News

96% of pipe is in good condition

3% has some deterioration

1% has significant damage

We only need to address 4% of our pipelines!

Find the Weak Link

Manage individual assets
Approach to Pipeline Condition Assessment

- **Understand**
 - Risk, Operational Characteristic, History

- **Assess**
 - Gather condition data

- **Address**
 - Repair/Rehabilitation

- **Manage**
 - Reinspection, Capital Planning

1. What is the risk?
 - Perceived or quantified
2. What is the condition?
 - Leak detection & pipe wall assessment
3. What do I do now?
 - Repair or replace
4. What do I do in the future?
 - Remaining useful life and capital planning
THE PURE PRECISION PLAYBOOK

Understand
• What is the risk?
• Perceived or quantified

Assess
• What is the condition?
• Leak detection & pipe wall assessment

Address
• What do I do now?
• Repair or replace

Manage
• What do I do in the future?
• Remaining useful life and capital planning
No single technology or technique can identify all of the indicators of pipe deterioration.

Therefore, a holistic, risk based approach should be used.
Using Risk as a Guide for Condition Assessment

- MFL
- Gas Pocket Detection
- Leak detection
- Pressure Monitoring
- Correlators
- Ultrasonic Thickness Testing
- Pulsed Eddy Current Testing
- Soil surveys
- Remaining Useful Life
- Structural Analysis
- Test pits
- FRS 0001+00 TO
- TO 2636+49
Transient Pressure Monitoring
Small Diameter Leak Detection

- Leak Survey with Loggers
- Localize with Correlators
- Pinpoint with Handheld Mic
Leak and Gas Pocket Detection

- Precursor to failure
- SmartBall and Sahara
- Contribute to force main failure
- Operational impact
Tethered hydrophones can identify leaks and air pockets

Identifies leaks & air pockets not found with correlators

Dallas Water Utilities Award Winning Program
• 144 leaks repaired in large diam pipe following 111 miles of inline leak detection
In-line Acoustic Leak & Gas Pocket Detection

Free Swimming/ Non-Tethered Hydrophone Technology
• Locates leaks and gas pockets in transmission or force mains
• Launch and retrieve in live flow through 4” openings
• Average 1 leak per 3 miles in concrete pipe
• Average 1 leak per 2 miles across all pipe materials
Introduction to SmartBall

SmartBall is a free-swimming inspection platform that is used to help pipeline owners better manage their pipelines by:

- Identifying and locating hidden leaks and gas pockets with high accuracy
- Mapping the pipeline to confirm alignment
- Measuring the pressure along the pipeline to identify partial blockages and confirm pipeline elevations
- Identifying and locating potential undocumented features and pipe type changes
- Contributing current inspection data to engineering analysis used for capital planning
Pipe Wall Condition

Identify pipe wall defects

- Corrosion
- Wall loss
- Broken prestressing wires
- Broken bar-wraps
Electromagnetic inspection identifies each pipe joint and broken wire wraps.
Internal and External EM Inspection Tools

Manned
- Diameter: 36”+
- Dewatered
- Manned system
- Allows for visual and sounding inspection
- 3D Mapping

External
- Diameter: Any
- Pipe segments excavated to springline
- Manned system

Long Range Robotics
- Diameter: 18”+
- Depressurized pipeline
- 8,000 foot tether
- Robotic with EM, CCTV, SONAR, laser, etc.
- 3D Mapping

Free-Swimming
- Diameter: 16”+
- Pipeline In Service
- Free swimming
 - * SONAR
 - * CCTV recording
Internal Visual and Sounding Inspection

- Complements EM Inspection and Structural Analysis
- Identifies problems with joints not addressed by EM
- Finds non-wire break related to problems (i.e., over loading, cracking, spalling, etc.)
- Provides accurate lay schedule and pipe inventory
Engineering & Analytics

Structural Evaluation
• AWWA Design check
• Finite Element Modeling

Remaining Useful Life Projection
Pipe Performance Curves based on FEA Provide Structural Assessment

- **Yield Limit**
- **Strength Limit (Pipe Failure)**

20 Wire Breaks at Current Operating Pressure 35 psi

- 180 psi allowable for pipe with 20 Wire Breaks
- 90 allowable wire breaks at 50 psi
Pipeline condition data and statistical models estimate remaining useful life

- Reinspect in 10 years
- 30 to 40 years until significant number of failures
Validation

Pipe 127

PipeDiver EM Signal Contour Plot

PipeDiver Video

EM Data
Validation of Pipe 127
Take Aways

- Time to move beyond age, failure, and material based replacement strategies
- Cost effective pipeline asset management uses risk to guide data collection, not replacement
- Data collection technique selection should be life-cycle based
- Inspection and repair approach typically 5 to 10% of the cost of most replacement only strategies
- Advanced pipeline asset management strategies can provide significant financial benefits
Summary

Condition assessment is an important part of your asset management program

- Reduce risk
- Manage more effectively
Questions?
Steve Bruskiewicz
262-305-5238
steven.bruskiewicz@xyleminc.com