October 10, 2019

Annual Meeting
WWOA

WWTP Effluent Phosphorus Filtration for Point-O-Seven-Five

Eric Lynne | Donohue & Associates, Inc.
Ben Brooks | City of Medford, WI
Presentation Outline

• Background
• Technology Selection
• Performance Guarantee Criteria
• Design Concepts
• Operational Concepts
• Conclusions
Background: WWTP Details

- Existing WWTP
 - 0.6 mgd average and 3.66 mgd firm capacity
- Activated sludge WWTP
 - Influent fine screening
 - Grit removal
 - A/O Activated sludge with final clarifier(s)
 - Deep bed sand filtration
 - UV disinfection
 - DAF/Aerobic digestion/BFP
- Permit limit = 0.075 mg/L TP (2024)
 - Studied options for compliance → selected filtration
Background: Existing Sand Filtration Issues
Background: Existing Sand Filtration Issues

• Needed a solution:
 ▪ End of Useful Life (valves, blowers, sand, controls)
 ▪ High Energy (air scour, backwash, effluent pumping)
 ▪ High Backwash Recycle
 ▪ Limited Control
 ▪ Filter Flies

• Saw newly converted filters in Oconomowoc, WI in 2014
 ▪ Facility plan recommended disc filters
Technology Selection

Aqua vs. Kruger/Westech

- Experience with low TP
 - References / Tour / Pilot / Etc.
 - Single source responsibility
 - Guarantee

- Hydraulics
- Cost
- References
- Proprietary vs. Open

Selected Veolia (Kruger)
Performance Guarantee Criteria

• The basics:
 ▪ How long
 ▪ In-House vs. Commercial Lab
 ▪ mg/L and Flow goals

• The fine print:
 ▪ Who does what: (runs the system, collects samples, pays for analysis)
 ▪ Applied TP
 ▪ sNRP limit
 ▪ Dose limitations

A happy wife lab director, is a happy life.
Design Concepts – Operator Perspective

• Check TP upstream of old sand filters

Sand filters offline for construction 11/1/18
Design Concepts – Operator Perspective

- Flow Control / Flexibility for Maintenance
- Access
- Coagulant Feed Systems
- Polymer Feed Systems
- W3 non-potable supply
- Expandability
- Redundancy in key equipment
Design Concepts – Operator Perspective

• Flow Control / Flexibility for Maintenance
• Access
• Coagulant Feed Systems
• Polymer Feed Systems
• W3 non-potable supply
• Expandability
• Redundancy in key equipment
Design Concepts – Operator Perspective

• Flow Control / Flexibility for Maintenance
• Access
• Coagulant Feed Systems
• Polymer Feed Systems
• W3 non-potable supply
• Expandability
• Redundancy in key equipment
Design Concepts – Operator Perspective

• Flow Control / Flexibility for Maintenance
• Access
• Coagulant Feed Systems
• Polymer Feed Systems (dry vs. emulsion)
• W3 non-potable supply
• Expandability
• Redundancy in key equipment
Design Concepts – Operator Perspective

• Flow Control / Flexibility for Maintenance
• Access
• Coagulant Feed Systems
• Polymer Feed Systems
• W3 non-potable supply
• Expandability
• Redundancy in key equipment
Design Concepts – Operator Perspective

• Flow Control / Flexibility for Maintenance
• Access
• Coagulant Feed Systems
• Polymer Feed Systems
• W3 non-potable supply
• Expandability
• Redundancy in key equipment
Design Concepts – Operator Perspective

• Flow Control / Flexibility for Maintenance
• Access
• Coagulant Feed Systems
• Polymer Feed Systems
• W3 non-potable supply
• Expandability
• Redundancy in key equipment
Design Concepts – Engineer Perspective

• Right Size
• Hydraulic Validation
• Rapid Mix G-Factor
• Coag/Floc Zone Dimensions
• Dose Control / Monitoring
• Enclosed vs Open Units
Design Concepts – Engineer Perspective

• Right Size
• Hydraulic Validation
• Rapid Mix G-Factor
• Coag/Floc Zone Dimensions
• Dose Control / Monitoring
• Enclosed vs Open Units

Takacs, et. al
Design Concepts – Engineer Perspective

• Right Size
• Hydraulic Validation
• Rapid Mix G-Factor
• Coag/Floc Zone Dimensions
• Dose Control / Monitoring
• Enclosed vs Open Units
Design Concepts – Engineer Perspective

- Right Size
- Hydraulic Validation
- Rapid Mix G-Factor
- Coag/Floc Zone Dimensions
- Dose Control / Monitoring
- Enclosed vs Open Units
Startup and Optimization

- Chemical Dosing (quantity)
- Floc Control (quality)
- Monitoring (automatic vs. manual)
- Clarifier Upsets (high TSS)
- Bio-P Upsets (high TP)
- Noise

Basic Recipe for 0.075 mg/L TP

- Initial dose 20 mg/L Ferric, start high then back off checking residual orthoP
- Stable polymer dose (0.5 mg/L)
- Monitor floc development in Floc Tank / Filter Inf Well
- Polymer and Ferric need to be balanced or it will blind/backwash
Startup and Optimization

- Chemical Dosing (quantity)
- Floc Control (quality)
- Monitoring
- Clarifier Upsets
- Bio-P Upsets
- Noise
Startup and Optimization

- Chemical Dosing (quantity)
- Floc Control (quality)
- Monitoring (automatic vs. manual)
- Clarifier Upsets (high TSS)
- Bio-P Upsets (high TP)
- Noise
Startup and Optimization

- Chemical Dosing (quantity)
- Floc Control (quality)
- Monitoring
- Clarifier Upsets (high TSS)
- Bio-P Upsets (high TP)
- Noise
Startup and Optimization

- Chemical Dosing (quantity)
- Floc Control (quality)
- Monitoring
- Clarifier Upsets (high TSS)
- Bio-P Upsets (high TP)
- Noise
Startup and Optimization

• Chemical Dosing (quantity)
• Floc Control (quality)
• Monitoring (automatic vs. manual)
• Clarifier Upsets (high TSS)
• Bio-P Upsets (high TP)
• Noise
Operational Concepts – Effluent Data

- **Medford Startup Data**
 - 2017 Effluent Data from N. Attleboro, MA Disc Filter
 - 0.1 mg/L limit
 - 11-15 mg/L FeCl₃ dose
 - 0.15 mg/L Polymer dose

2017 Effluent Data from N. Attleboro, MA Disc Filter
- 0.1 mg/L limit
- 11-15 mg/L FeCl₃ dose
- 0.15 mg/L Polymer dose
Operational Concepts – Effluent Data

• Medford Startup Data

Operational Statistics
• 0.075 mg/L TP limit
• 19 mg/L FeCl₃ dose (23:1 molar ratio)
• 0.5 mg/L Polymer dose
• 0.041 mg/L TP actual 7/7/19-9/8/19
Conclusions

• Still proving itself
• Extensive startup/lab effort
• Not so simple after all
 ▪ Great steady state
 ▪ Attention during Peak Flows/Upsets
• Looking forward to more good effluent
• BFP cake improved
Conclusions (continued)

• Backwash Flow Surges
• Flow vs. Loading Rate
• Analyzer LOD
• Ramifications of Ferric Overdose

Words to live by:

“I will reserve all comments until startup is complete.”
- John Fales
Before
Questions and Comments

For more information...

Eric Lynne, PE
elynne@donohue-associates.com
920-803-7375

Ben Brooks
bbrooks@medfordwi.us
715-748-4122

Veolia/Kruger Manufacturer Representation:

DONOHUE

PETE RSON AND MATZ, INC.