UNIQUE THICKENING AND DEWATERING OPERATIONS RELATED TO NUTRIENT REMOVAL

Allen Williams
St. Cloud NEW Recovery Facility
Overall Nutrient and Resource Recovery (NR2) Process Flow

- WAS THICKENING
- WAS P RELEASE (Tank 910)
- CO-THICKENING
- DIGESTERS
- DEWATERING
- CENTRATE
- EQUALIZATION
- CELL #6
- PROCESS DRAIN TO PLANT HEADWORKS
- OSTARA REACTOR
- PROCESS DRAIN TO PLANT HEADWORKS

Symbols:
- BSS - Biosolids
- BSC - Biosolids Centrifuge
- BSL - Biosolids Loadout
- CEN - Centrate
- FLT - Filtrate
- EQ - Equalization
- PFLT - Process Filtrate
- PSD – Primary Sludge
- TS - Thickened Sludge
- WPR - WAS P Release Sludge
- WW - Water Wash Drain
WASSTRIP Related Innovative Design and Process Opportunity

- Target: 24+ hours detention in WASSTRIP
- Thin WAS (<1% TS)
- WASSTRIP requiring 2% TS for 24 hours detention
 - Solution: Instead of introducing a new process to thicken – repurpose and utilize one of the existing GBT’s to thicken WAS to 2% and then send to the WASSTRIP tank
GBT WAS Thickening Pilot

- Piloted getting 2% WAS off of the GBT
 - Belt Speed (20 to 100%)
 - WAS flow (110 – 180 gpm)
 - Dam position
 - Chicane positions
 - Polymer dose
 - Discussed different weave size of the belt
2% WAS
WAS Filtrate
WAS and Co-thickening GBT Floc Hopper issues

• Low flows (100 gpm) to the large GBT’s causing solids settling in upfront hopper and flow distribution problems on the gravity deck
 – Solution: Reduce the hopper size
WAS Pre-Thickening

- Operates 24/7
- Bypass designed for blending to 2.0% solids, not typically used
WASSTRIP

Key Target: Maintain level in 910 at 7 feet
- Operator will set the GBT feed flow to the co-thickener to maintain 7 feet
- Pumps operate to maintain GBT feed flow setpoint

Secondary Target: WASSTRIP HRT of 24 hrs at 2% Solids
- Level is continuously monitored and HRT checked periodically
- GBT feed flow adjusted as needed to adjust HRT
- Mixers continuously run
GBT flow pattern – Co-thickening

WPR 2.0% TS ~100 mg/L PO4-P

PSD 2.0% TS ~0 mg/L PO4-P

WAS RELEASE PUMPS (2)

WPR FCV

GBT FCV

CO-THICKENING

TS 9.0% TS Particulate P (Bio and Chem) N in biomass

THICKENED SLUDGE CHUTE

THICKENED SLUDGE PUMPING

DIGESTERS

WPR

Raw Sludge Pumps (4)

PSD FCV

PSD FCV

Wash Water

TO BNR

TO FILTRATE PUMP STATION

Polymer

PFLT

~60 mg/L PO4-P Very little Nitrogen

Primary Scum

HSW

GBT Flow Pattern – Co-thickening

2.0% TS

~100 mg/L PO4-P

Very little Nitrogen

~0 mg/L PO4-P

~60 mg/L PO4-P
Co-thickening GBT

• **Key Target:** Maintain level in 910 at 7 feet
 - Operator will set the GBT feed flow to the co-thickener to maintain 7 feet in 910 (WASSTRIP)
 - Operators will basically match flow leaving and going to WASSTRIP (approximately 40 gpm)
 - Pumps operate to maintain GBT feed flow setpoint
 - Primary sludge flow typically 60 gpm
 - Cake is coming off at 8% to 9% TS

• **Secondary Target:** Filtrate TSS <500 ppm
 - Very important to have clean filtrate going to Ostara process
High Strength Waste

- HSW added to thickened sludge
- Receiving up to 10,000-17,000 gpd HSW including dairy, soda, brewery and food processing waste
- Design average TS flow 30,000 gpd
- Biological phosphorus converted to soluble phosphorus during digestion
- Some soluble phosphorus bound with Al, Ca and Mg in digestion
- Organic nitrogen converted to ammonia during digestion
- Storage digester to be converted to primary digester
Digester and Centrifuge Operation

- Operates 48 to 72 hours/week at 75 gpm
- Target TS concentration of 15%

Examples of throughput changes:
- 75 gallons per minute at 3.5% solids = 1314 lb/hr
- 75 gallons per minute at 4.0% solids = 1501 lb/hr
Centrifuge Dewatering
Centrifuge Operation

- In order to achieve 15% TS:
 - Adjustments to polymer dosage and make up water
 - Adjustments to centrifuge speed settings
Centrifuge Operation
Centrifuge Operation

Polymer make up water

- Changed make up water to warmer REC EFF

Sludge temperature

- Sludge type: Anaerobic digested biosolids at 55% VS
- Dewatering equipment: Centrysis CS18-4
- Polymer Used: Polydyne C-6275 (liquid emulsion)
- Polymer % Active: 45
- Polmer Makeup Water Temp ºF: 49
- Typical Sludge pH: 7.5
- Typical Sludge Temperature deg ºF: 95

Sludge feed % solids

<table>
<thead>
<tr>
<th>Sludge Feed (%TS):</th>
<th>3.8</th>
<th>3.8</th>
<th>3.8</th>
<th>3.8</th>
<th>3.2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sludge Feed (%TVS):</td>
<td>#DIV/0!</td>
<td>#DIV/0!</td>
<td>#DIV/0!</td>
<td>#DIV/0!</td>
<td>#DIV/0!</td>
</tr>
</tbody>
</table>

Sludge Flow Rate (gpm):

| 76 | 76 | 76 | 75 | 77 |

Sludge Throughput (lbs/hr):

| 1445 | 1445 | 1445 | 1426 | 1233 |

Polymer Pump Capacity (gph):

| 10.36 | 10.36 | 10.36 | 10.36 | 10.36 |

Stroke Length (%):

| 100 | 100 | 100 | 100 | 100 |

Polymer Pump Speed (%):

| 62 | 53 | 50 | 39 | 42 |

Polymer Flow Rate (gpm):

| 0.11 | 0.09 | 0.09 | 0.07 | 0.07 |

Neat Polymer Flow Rate (gph):

| 0.42 | 5.49 | 5.18 | 4.04 | 4.35 |

| 74.14 | 63.37 | 59.79 | 47.26 | 58.86 |

Active Polymer Dosage (lb/ton):

| 33.36 | 28.52 | 26.90 | 21.27 | 15.26 |

Polymer Sol. (%)

| 1.07 | 1.02 | 1.02 | 1.12 | 1.04 |

| 10.00 | 9.00 | 8.50 | 6.00 | 7.00 |

Polymer Sol. Flow Rate/dilution H2O flow (gpm):

| 74.14 | 63.37 | 59.79 | 47.26 | 58.86 |

Centrate TSS (mg/l):

| 50 | 80 | 100 | 200 | 50 |

Thickened/Cake Solids (%TS):

| 22 | 14 | 13.8 | 13.5 | 13 |

Capture (%):

| 99.9 | 99.8 | 99.8 | 99.6 | 99.9 |

99.812

Polymer Dosage Calculation

Date:	08/16/18	08/17/18	08/17/18	09/12/18	12/14/18
Time:	5:00 PM	2:30 PM	5:00 PM	2:30 PM	5:00 PM
Centrifuge Δn :	1	1	2.5	2.5	1.750
Centrifuge p1 :	20	20	25	25	19.250
Centrifuge α :	4.5	4.5	2.5	1.7	3.300
Sludge temp:	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Sludge pH:	3.8	3.8	3.8	3.8	3.2
Sludge Feed (%TS):	3.8	3.8	3.8	3.8	3.2
Sludge Feed (%TVS):	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!	#DIV/0!
Sludge Flow Rate (gpm):	76	76	76	75	77
Sludge Throughput (lbs/hr):	1445	1445	1445	1426	1233
Polymer Pump Capacity (gph):	10.36	10.36	10.36	10.36	10.36
Stroke Length (%):	100	100	100	100	100
Polymer Pump Speed (%):	62	53	50	39	42
Polymer Flow Rate (gpm):	0.11	0.09	0.09	0.07	0.07
Neat Polymer Flow Rate (gph):	0.42	5.49	5.18	4.04	4.35
Polymer Dosage (lbs/ton):	74.14	63.37	59.79	47.26	58.86
Active Polymer Dosage (lb/ton):	33.36	28.52	26.90	21.27	15.26
Polymer Sol. (%)	1.07	1.02	1.02	1.12	1.04
Polymer Sol. Flow Rate/dilution H2O flow (gpm):	10.00	9.00	8.50	6.00	7.00
Polymer Dosage (lbs/ton):	74.14	63.37	59.79	47.26	58.86
Centrate TSS (mg/l):	50	80	100	200	50
Thickened/Cake Solids (%TS):	22	14	13.8	13.5	13
Capture (%):	99.9	99.8	99.8	99.6	99.9

99.812
Centrifuge Dewatering

- Dirty centrate diverted to process drain pump station
- Clean centrate to equalization tank
- Cake biosolids processed in thermal hydrolysis process
NR2 Biosolids

- Biosolids Product Enhancement: Lystek
 - Class A
 - Enhance land application logistics
 - 12% Flowable/Pumpable Liquid
 - Decrease liquid storage needs (increase storage capacity)
 - Decrease hauling time and costs
Sludge Storage Conversion

Centrate EQ and Lystek Biosolids Storage

- **Lystek Biosolids Storage**
 - 198 days of storage at future average flow

- **Digested Sludge Storage**
 - 39 days of storage at future average flow

- **Sidestream EQ/Treatment**
 - 21 days of storage at future max month flow
Nutrient Recovery Process

- PO4-P and NH4-N converted to struvite
NR2 Project in the Biosolids Building

- Boiler
- Centrifuge
- Lystek
- Biosolids Loadout
- Nutrient Harvesting
- Chemical Storage
- Polymer Storage
NR2 Project in the Biosolids Building
The Team
Thank You

Donohue & Associates, Inc.

Allen Williams
awilliams@donohue-associates.com
(920) 803-7319