Lagoon Solutions: Treatment Performance and Nutrient Removal

October 25, 2018

Tim Canter
Process Specialist
Environmental Dynamics International
Agenda

- Compliance and Capacity
- Lagoon Aeration
- Lagoon Processes
 - Traditional
 - Review of Advanced Technologies
- Final Thoughts
- Q&A
Compliance and Capacity
Compliance and Capacity

• VAST
 – Volume
 – Aeration
 – Short-circuiting
 – Temperature
Lagoon Aeration
Lagoon Aeration – Why Aeration?

- Aerobic (Oxygen)
- Anoxic (Nitrate/Nitrite)
- Anaerobic (Iron, Manganese, Sulfate...)
Lagoon Aeration – Why Aeration?

Aerobic (Oxygen)

Anoxic (Nitrate/Nitrite)
Lagoon Aeration – What to Use?

• Surface vs. Diffused Aeration
 – Surface
 • Easy, less expensive to install
 – Diffused
 • Higher energy efficiency
 – Generally 40-50% the power for equivalent oxygen
Lagoon Aeration – What to Use?

• Fine Bubble vs. Coarse Bubble
 – Fine Bubble
 • SOTE 1.5-2.2%/ft
 • Maintenance requirement (membrane changes)
 – Backflow prevention
 • Head loss across membrane
 – May increase or decrease with age and use
 • Greater volumetric pumpage for mixing (than coarse bubble)
Lagoon Aeration – What to Use?

- Fine Bubble vs. Coarse Bubble
 - Coarse Bubble
 - SOTE 1%/ft
 - No maintenance expected
 - Nominal head loss
 - Less volumetric pumpage for mixing (than fine bubble) but able to lift heavy particles with focused suction (i.e., airlift pump)
Lagoon Aeration – What to Use?

• Fine Bubble and Coarse Bubble
 – Challenges of combining the two:
 • Engineered orifice satisfies design at one airflow rate
 – High or lower air flow results in disproportionate air flow to coarse
 • Less efficient overall
 – Combining 2%/ft with 1%/ft must result in higher air flow than 2%/ft throughout
 • No mixing advantage for the addition of sparsely-placed airlift pumps
Lagoon Processes
Lagoon Processes - Traditional

• Four Primary Types:
 – Anaerobic
 • Covered (welded), no oxygen, mostly industrial
 – Facultative
 • Atmospheric oxygen, also as QZ for settling
 – Partial Mix
 • Aeration, minimal suspension of solids
 – Complete Mix
 • Aeration, homogenous conditions
Lagoon Processes - Traditional

- Partial Mix Design

 - For BOD: \(\frac{C_e}{C_0} = \frac{1}{1 + \left(\frac{kt}{n} \right)^n} \)

 - \(t = \text{hrt (days)} \)
 - \(n = \# \text{ of ponds} \)
 - \(k = 0.276 \text{ /day @ 20° C} \)

 - \(Kt = 0.276 \times 1.036^{T-20} \)
Lagoon Processes - Traditional

• Complete Mix Design

 – For BOD: \(\frac{C_e}{C_0} = \frac{1}{1 + \left(\frac{kt}{n}\right)^n} \)

 • \(t = \text{hrt (days)} \)
 • \(n = \# \text{ of ponds} \)
 • \(k = 2.5 \ @ \ 20^\circ \text{C} \ (\text{Note: PM = 0.276}) \)
 – \(Kt = 2.5 \ * \ 1.036^{T-20} \)
Lagoon Processes - Traditional

• Complete vs. Partial Mix Design
 – What does “completely mixed” mean?
 • Is this really a step function?

![Diagram showing BOD Removal Rate (k) vs. Air Flow or Mixing Energy with labels for Complete Mix and Partial Mix. The Partial Mix has a 7 scfm/1,000 ft³ requirement.]
Lagoon Processes - Traditional

• Complete vs. Partial Mix Design
 – What does “completely mixed” mean?
 • Is it linear?
 • Or sinusoidal?

BOD Removal Rate vs. Air Flow or Mixing Energy

- Complete Mix
- Partial Mix

8 scfm/1,000 ft³
Lagoon Processes - Traditional

• Complete vs. Partial Mix Design
 – What does “completely mixed” mean?
 • Is it linear?
 • Or sinusoidal?

There is no accepted lagoon model known as “Vigorously Mixed”
Lagoon Processes - Traditional

• Complete vs. Partial Mix Design
 – What does “completely mixed” mean?
 • Energy input is only one dimension
 • What about distribution of energy?
Review of Advanced Technologies
Review of Advanced Technologies

• Front-of-the-Plant
 – Advantages
 • Decreased footprint
 • Total nitrogen removal
 • Reduced energy
 – Shared blowers for BOD/ammonia
 – Denitrification reduces energy cost (use nitrate vs. oxygen)
Review of Advanced Technologies

• Front-of-the-Plant
 – Disadvantages
 • Sludge management
 – Wasting rates/timing
 – Sludge removal from digester
 • Increased mechanical components
 – Valves, pumps, clarification equipment, etc.
 • Potentially more complicated construction project
 – Maintaining lagoon operation, dirt work, etc.
Review of Advanced Technologies

• Front-of-the-Plant Treatment Examples
 – Lagoon-Based Batch Reactors
 • w/ or w/o attached growth
Review of Advanced Technologies

• Front-of-the-Plant Treatment Examples
 – Lagoon-Based Batch Reactors
 • w/ or w/o attached growth
 – Activated Sludge Lagoons
Review of Advanced Technologies

• Back-of-the-Plant
 – Advantages
 • Potentially less invasive construction
 – “Drop in” options may require little site modification
 • Easy to operate/maintain
 • Demonstrated extreme cold performance
Review of Advanced Technologies

• Back-of-the-Plant
 – Disadvantages
 • Must address variable loading and temperature
 – The one/two punch of fall/winter nitrification
Review of Advanced Technologies

• Back-of-the-Plant
 – Addressing variable loading and temperature

Summer

- **Existing Lagoon System**
 - 25° C
 - 30 mg/L

- **Post-Lagoon Ammonia Treatment**
 - 25° C
 - 0.5 mg/L
 - 5 mg/L
Review of Advanced Technologies

- Back-of-the-Plant
 - Addressing variable loading and temperature

![Diagram showing water treatment process]

- Existing Lagoon System
 - Input: 30 mg/L
 - Temperature: 10°C

- Post-Lagoon Ammonia Treatment
 - Output: 5 mg/L
 - Temperature: 10°C

Fall
Review of Advanced Technologies

- **Back-of-the-Plant**
 - Addressing variable loading and temperature

Winter

- **Existing Lagoon System**: 30 mg/L → 1°C
- **Post-Lagoon Ammonia Treatment**: 28 mg/L → 1°C

- **Winter**: 20 mg/L
Review of Advanced Technologies

• Back-of-the-Plant
 – Disadvantages
 • Must address variable loading and temperature
 – Solutions:
 » Thermal Covers (normalize temperature)
 » Re-Heat Water (Since at least 2006)
 » Bioaugmentation
 » Step-Feed/Short-Circuit
Review of Advanced Technologies

• Back-of-the-Plant
 – Disadvantages
 • Must address variable loading and temperature
 • Filtration may be necessary
 • Full sludge removal may be necessary
 • Total nitrogen removal difficult/complicated
 • Potential long term viability issues
Review of Advanced Technologies

- Back-of-the-Plant Treatment (Examples)
 - IFAS (MBBR) w/ clarifier or filter
Review of Advanced Technologies

- Back-of-the-Plant Treatment (Examples)
Review of Advanced Technologies

• Back-of-the-Plant Treatment (Examples)
Final Thoughts
Final Thoughts

• Increasing Capacity (VAST)
 – Volume (sludge)
 – Aeration
 – Short-circuiting
 – Temperature

• No Silver Bullet
 – Front/Back-of-the-Plant dependent on client, operator, site limitations, and personal preference
 – All have advantages and disadvantages

• Design only as good as inputs
 – Influent studies needed!!!
Q&A

Tim Canter
tim.canter@wastewater.com
Environmental Dynamics International (EDI)