PFAS Overview and Water Quality Program Update

Nate Willis
Wastewater Engineer
Wisconsin Dept. of Natural Resources

Lake Michigan District WWOA Meeting
December 12, 2019
Topics

• PFAS Overview
 – What are they and where did they come from?
 – What’s the problem?

• PFAS wastewater treatment options

• Water Quality Program Update
 – Monitoring Efforts
 – Rulemaking Efforts
What are PFAS and where did they come from?

- Family of 4,000+ man-made organic compounds

PFASs:
- perfluoroalkyl acids (PFAAs)
- perfluorooalkane sulfonic acids (PFSAs)
- perfluoroalkyl phosphonic acids (PFPPAs)
- perfluoroalkyl phosphinic acids (PFPIAs)

PFAAs:
- perfluoroalkyl carboxylic acids (PFCAs), $C_{n,F_{2n+1}}COOH$
- perfluoroalkane sulfonic acids (PFSAs), $C_{n,F_{2n+1}}SO_3H$
- perfluoroalkyl phosphonic acids (PFPPAs), $C_{n,F_{2n+1}}PO_3H_2$
- perfluoroalkyl phosphinic acids (PFPIAs), $(C_{n,F_{2n+1}})(C_{m,F_{2m+1}})PO_2H$

PFSAs:
- perfluoroalkane sulfonamides (PFSAs), $C_{n,F_{2n+1}}SO_2R$, R = NH, NHCH_2CH_2OH, etc.

PFPIAs:
- perfluoroalkyl phosphonamides (PFPIAs)
- perfluoroalkyl phosphonamidates (PFPIAs)

PFCAs:
- perfluoroalkyl carboxylic acids (PFCAs)
- e.g., $C_2F_5OC_2F_5OCF_2COOH$

PFPPAs:
- perfluoroalkyl phosphonic acids (PFPPAs)
- e.g., $C_2F_5OCF_2CF_2SO_3H$

PFPIAs:
- perfluoroalkyl phosphonic acids (PFPIAs)
- e.g., $C_2F_5OCF_2CF_2SO_3H$

* These polymers are based on monomers derived from PASFs or fluorotelomer-based raw materials.
What are PFAS and where did they come from?

- General structure: fluorinated carbon chain (tail) attached to functional group (head)

- **Perfluoroalkyl** Substances: fully-fluorinated tail

- **Polyfluoroalkyl** Substances: not fully-fluorinated (at least one carbon is not attached to a fluorine)

PFOA (perfluorooctanoic acid):

8:2 FTOH (fluorotelomer alcohol):
What are PFAS and where did they come from?

- Many PFAS are surfactants
 - Tail is hydrophobic, oleophobic and lipophobic, head is polar and hydrophilic
 - Readily form films

What are PFAS and where did they come from?

<table>
<thead>
<tr>
<th>PFAS¹</th>
<th>Development Time Period</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1930s</td>
</tr>
<tr>
<td>PTFE</td>
<td>Invented</td>
</tr>
<tr>
<td>PFOS</td>
<td>Initial Production</td>
</tr>
<tr>
<td>PFOA</td>
<td>Initial Production</td>
</tr>
<tr>
<td>PFNA</td>
<td>Initial Production</td>
</tr>
<tr>
<td>Fluorotelomers</td>
<td>Initial Production</td>
</tr>
<tr>
<td>Dominant Process²</td>
<td>Electrochemical Fluorination (ECF)</td>
</tr>
</tbody>
</table>

Pre-Invention of Chemistry / Initial Chemical Synthesis / Production | Commercial Products Introduced and Used

What are PFAS and where did they come from?

- Manufactured since 1940s for use in:
 - Non-stick coatings
 - Waterproof fabrics
 - Firefighting foams
 - Protective coatings
 - Stain/water resistant products
 - Chrome plating
 - Food packaging
 - Personal care products
What’s the problem?
What’s the problem with PFAS?

- Carbon-fluorine bond is incredibly strong
 - Fluorine atoms “shield” carbon from chemical reactions
 - PFAS do not undergo biotic or abiotic degradation
 - Precursor PFAS do transform into “terminal compound” PFAS
 - Thermally degrade only at high temperatures (>1800°F)
What’s the problem with PFAS?

Source: Wang, Cousins, Scheringer, Buck, Hungerbuhler, Global Emission Inventories for C4-C14 PFCA Homologues from 1951 to 2030, Part I: Production and Emissions from Quantifiable Sources, 2014
What’s the problem with PFAS?

- Persistence = global distribution

 - PFAS have been found in wildlife on all continents

What’s the problem with PFAS?

- Persistence = global distribution
 - PFAS have been found in surface waters globally
What’s the problem with PFAS?

• Persistence = bioaccumulation = toxicity
 – Animal studies have shown negative effects on:
 • Liver
 • Immune system
 • Reproduction and development
 • Thyroid (endocrine system)
 • Cancers
 – Probable links to human health effects*:
 • Childhood growth and development
 • Chance of becoming pregnant
 • Hormone regulation
 • Increased cholesterol levels
 • Immune system effects
 • Cancer risk

*It is important to note that human health effects were often found only in highly exposed populations (i.e., Dupont workers in Ohio River Valley)
Wastewater Treatment Technologies for PFAS
PFAS Wastewater Treatment

• GAC (Granular Activated Carbon)
 – Pollutants adsorb to surface of activated carbon
 – Carbon material (wood, coconut shells, coal, etc.,...)
 • Diameter = 0.5 to 3mm
 • Surface Area = 1000 – 1500 m2/gram
 – Once adsorption capacity reached, carbon is either regenerated or replaced

(https://www.elgalabwater.com/technologies/activated-carbon)
PFAS Wastewater Treatment

- GAC Column Experiment Example

\[
\text{Bed Volume} = \frac{\text{Volume of treated water}}{\text{Volume of the adsorbent (carbon)}}
\]

Source: (https://stud.epsilon.slu.se/8158/13/ostlund_a_150709.pdf) Ostlund, Anna; Evaluation of granular activated carbon and anion exchange using column tests, and the effect of dissolved organic carbon, Swedish University of Agricultural Sciences
PFAS Wastewater Treatment

• GAC
 – Most widely-used/studied treatment for PFAS
 – High removal efficiency (89 - 99%) of long-chained PFAS (≥C8; PFOA, PFOS)
 – Poor removal of smaller-chained PFAS (<C6)
 – Background organics negatively impact efficiency
 – What to do with spent carbon?
 • Landfills
 • Incineration
 – Little information on created byproducts!
PFAS Wastewater Treatment

• PAC (Powdered Activated Carbon)
 – Same principle as with GAC, pollutants adsorb to carbon surface
 • Same issues with removal efficiencies affected by organics
 – Solids filtered out
 – Disposal of media
 • Landfill
 • Incineration
PFAS Wastewater Treatment

- Anion-Exchange Resins
 - Anions in resin exchange with PFAS anions
 - Binds PFAS with resin
 - Operated in series or individually
 - Like GAC, must be regenerated or disposed
PFAS Wastewater Treatment

• Anion-Exchange Resin Column Experiment Example

Source: [Hhttps://stud.epsilon.slu.se/8158/13/ostlund_a_150709.pdf](https://stud.epsilon.slu.se/8158/13/ostlund_a_150709.pdf) Ostlund, Anna; Evaluation of granular activated carbon and anion exchange using column tests, and the effect of dissolved organic carbon, Swedish University of Agricultural Sciences
PFAS Wastewater Treatment

• Anion-Exchange Resin
 – Same issues as GAC:
 • Breakthrough of smaller-chained PFAS
 • Organic matter reduces efficiency
 – Disposal of spent resin
 • Landfills
 • Incineration
PFAS Wastewater Treatment

- **Reverse Osmosis Filters**
 - Water is pushed through a spiralized semipermeable membrane under pressures that exceed the osmotic pressure
 - 93-99% Removal efficiencies
 - Contaminants are captured by the membrane and contained in a more concentrated solution
 - Concentrated Volume: Typically 10-20% of original
 - More initial capital costs than GAC
 - Shown to be effective for treating landfill leachate, but not widely used
Wisconsin Monitoring Efforts
Surface Water Monitoring: 2019

- **Fish Tissue Sampling**
 - Target resident individuals
 - WSLH processes & analyzes
 - Initial results expected 1/2020

- **Surface Water Chemistry**
 - Adapted Michigan EGLE protocols
 - Approved materials & SOP
 - Analyzed at WSLH
2019 Surface Water and Fish Tissue Monitoring

- Menominee R @ Marinette
- Starkweather Creek
- "Middle" Wisconsin R
- Mississippi R
- La Crosse R nr Fort McCoy

Maximum PFOS concentrations:
- Menominee R @ Marinette: Max 0.4 ng/L PFOS
- Peshtigo R & St. Louis R: Max 0.63 ng/L PFOS
- "Middle" Wisconsin R: Max 5.6 ng/L PFOS
- Starkweather Creek: Max 360 ng/L PFOS
- Mississippi R: Max 4.2 ng/L PFOS
- La Crosse R nr Fort McCoy: Max 43 ng/L PFOS

Note: The '' symbol indicates additional information or conditions related to the PFOS concentration.
Starkweather Creek Results

- 4 locations, 3 samples
- Results (ng/L):
 - 1:
 - PFOA: 23, 30, 20
 - PFOS: 79, 180, 71
 - 2:
 - PFOA: 43, 40, 34
 - PFOS: 270, 360, 220
 - 3:
 - PFOA: 27, 24, 18
 - PFOS: 160, 180, 120
 - 4:
 - PFOA: 2.6, 2.1, 2.3
 - PFOS: 2.6, 1.8, 1.5
Letter Sent to 125 POTWs

- PFAS Background
- Known Industrial Sources
- Statement that POTWs are not original sources of PFAS, but PFAS pass through them
- Requested Actions
- Invitation to participate in the State Lab of Hygiene Study
- Statement of Department’s Intent in sending letter
- Additional Resources
Recipients

- 125 POTWs
 - 27 Authorized Pretreatment Programs
 - 91 Other POTWs with SIUs
 - 6 found by query of permit fact sheets
 - 1 community with PFAS in water supply
Requested Actions

• Voluntary sampling of influent and effluent
 – 36 PFAS compounds
 – Please use isotope dilution method
 – Within 90 days of receipt of letter

• Source Identification and Reduction
 – If PFOA+PFOS > 20 ng/L
 – Invitation to work with DNR to develop plan to sample potential sources
 – Invitation to work with DNR and sources to eliminate PFAS
 • Product substitution
 • Operational Controls
 • Cleanup of historical contamination
 • Pretreatment
Intended Outcomes

• Primary Goal: Avoid effluent limitations at POTWs
 – Address sources before standards take affect
 – Avoid back-end treatment at POTWs

• Parallel Michigan’s demonstrated approach

• Scope extent of PFAS contamination in Wisconsin

• Inform Economic Impact Analysis for standards rulemaking
 – Make informed decisions based upon data
Actual Outcomes

- 2 POTWs completed sampling
- Several POTWs have indicated they may sample once labs have been certified
 - Labs can be certified for PFAS testing of wastewater as of 10/29/2019 (up to 36 compounds)
- POTWs have indicated they will look to work with pretreatment industries to reduce PFAS in effluent
Wisconsin Rulemaking Efforts
• DHS 6/21/19
 Recommendation
 – 20 ng/L PFOA + PFOS
 Enforcement Standard
 – 2 ng/L PFOA+PFOS
 Preventive Action Limit
• Standards apply to all state programs
• When adopted, will apply outside DMZs
Groundwater Standards: Process

- **DNR**
 - Request DHS review of pollutants
 - DNR requested 2 PFAS compounds and 25 others on 3/2/2018 (“Cycle 10”)
 - DNR requested 34 more PFAS compounds and 6 agricultural chemicals (“Cycle 11”)

- **DHS**
 - 1. Review Literature and Available Scientific Information
 - 2. Select Appropriate Science-based Standards

- **DNR**
 - 1. Review Existing Rules
 - 2. Revise Rules to Achieve Compliance with Standards (Public Input)
 - 3. Enforce Standards
Cycle 10 Recommendations

<table>
<thead>
<tr>
<th>Substance</th>
<th>New or Existing</th>
<th>Enforcement Standard</th>
<th>Preventive Action Limit</th>
</tr>
</thead>
<tbody>
<tr>
<td>1,1-Dichloroethane</td>
<td>Existing</td>
<td>No Change</td>
<td>No Change</td>
</tr>
<tr>
<td></td>
<td></td>
<td>850 µg/L</td>
<td>85 µg/L</td>
</tr>
<tr>
<td>1,2,3-Trichloropropane</td>
<td>Existing</td>
<td>↓ 0.3 ng/L</td>
<td>↓ 0.03 ng/L</td>
</tr>
<tr>
<td>1,4-Dioxane</td>
<td>Existing</td>
<td>↓ 0.35 µg/L</td>
<td>↓ 0.035 µg/L</td>
</tr>
<tr>
<td>Aluminum</td>
<td>Existing</td>
<td>No Change</td>
<td>No Change</td>
</tr>
<tr>
<td></td>
<td></td>
<td>200 µg/L</td>
<td>20 µg/L</td>
</tr>
<tr>
<td>Bacteria (Total coliform)</td>
<td>Existing</td>
<td>No Change</td>
<td>No Change</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Bacteria (E. coli)</td>
<td>New</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Barium</td>
<td>Existing</td>
<td>No Change</td>
<td>No Change</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2 mg/L</td>
<td>0.4 mg/L</td>
</tr>
<tr>
<td>Boron</td>
<td>Existing</td>
<td>↑ 2,000 µg/L</td>
<td>↑ 400 µg/L</td>
</tr>
<tr>
<td>Clobianidin</td>
<td>New</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,000 µg/L</td>
<td>200 µg/L</td>
</tr>
<tr>
<td>Cobalt</td>
<td>Existing</td>
<td>No Change</td>
<td>No Change</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40 µg/L</td>
<td>↓ 4 µg/L*</td>
</tr>
<tr>
<td>Dacthal MTP and TPA degrades</td>
<td>New</td>
<td>Combine with dacthal</td>
<td>↓ 7 µg/L*</td>
</tr>
<tr>
<td>Glyphosate</td>
<td>New</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 mg/L</td>
<td>1 mg/L</td>
</tr>
<tr>
<td>Glyphosate AMPA degradates</td>
<td>New</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 mg/L</td>
<td>2 mg/L</td>
</tr>
<tr>
<td>Hexavalent chromium</td>
<td>New</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>70 ng/L</td>
<td>7 ng/L</td>
</tr>
<tr>
<td>Imdaclopird</td>
<td>New</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.2 µg/L</td>
<td>0.02 µg/L</td>
</tr>
<tr>
<td>Isoxatulftole & Isoxatulftole Diketonitrile (DKN)</td>
<td>New</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>3 µg/L</td>
<td>0.3 µg/L</td>
</tr>
<tr>
<td>Isoxatulftole Benzoic Acid (BA)</td>
<td>New</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>800 µg/L</td>
<td>160 µg/L</td>
</tr>
<tr>
<td>Molybdenum</td>
<td>Existing</td>
<td>No Change</td>
<td>No Change</td>
</tr>
<tr>
<td></td>
<td></td>
<td>40 µg/L</td>
<td>↓ 4 µg/L*</td>
</tr>
<tr>
<td>PFOA & PFOS</td>
<td>New</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>20 ng/L</td>
<td>2 ng/L</td>
</tr>
<tr>
<td>Strontium</td>
<td>New</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,500 µg/L</td>
<td>150 µg/L</td>
</tr>
<tr>
<td>Sulfentrazone</td>
<td>New</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>1,000 µg/L</td>
<td>100 µg/L</td>
</tr>
<tr>
<td>Tetrachloroethylene (PCE)</td>
<td>Existing</td>
<td>↑ 20 µg/L</td>
<td>↑ 2 µg/L</td>
</tr>
<tr>
<td>Thiamethoxam</td>
<td>New</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>100 µg/L</td>
<td>10 µg/L</td>
</tr>
<tr>
<td>Thienecarbzone-methyl</td>
<td>New</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr>
<td></td>
<td></td>
<td>10 mg/L</td>
<td>2 mg/L</td>
</tr>
<tr>
<td>Trichloroethylene (TCE)</td>
<td>Existing</td>
<td>↓ 0.5 µg/L</td>
<td>↓ 0.05 µg/L</td>
</tr>
</tbody>
</table>

* Although DHS is not recommending a change in the enforcement standard for this substance, we are recommending a change in the preventive action limit. Please refer to the specific science support documents for each of the substances for more detail.
How WI’s Recommended GW Standard Compares to Other States’ Standards

<table>
<thead>
<tr>
<th></th>
<th>Groundwater (all values in ppt)</th>
<th>Groundwater Standard/Guideline Policy Type</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PFOA</td>
<td>PFOS</td>
</tr>
<tr>
<td>Colorado</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Delaware</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>70</td>
<td>70</td>
</tr>
<tr>
<td>Massachusetts</td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Michigan</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>Minnesota</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>35</td>
<td>15</td>
</tr>
<tr>
<td>New Hampshire</td>
<td>12</td>
<td>15</td>
</tr>
<tr>
<td>New Jersey</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>10</td>
</tr>
<tr>
<td>Vermont</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>20</td>
</tr>
<tr>
<td>Wisconsin</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>20</td>
<td>20</td>
</tr>
</tbody>
</table>
Surface Water Quality Standards

• Triennial Standards Review

A: In Progress
B: New Priorities
C: Priorities, but limited progress expected
D: Barriers to progress
E: Not Priorities
Water Quality Standards Development Process

- Relative source contribution
- Human Health Surface Water Quality Criteria

RfD 70 kg

Bioaccumulation factor

0.02 kg / day

2 liters / day
Water Quality Standards

- WI currently does not have surface water quality standards (WQS) for PFAS
- Scope Statement approved by Governor for development of WQS
- WQS apply in waterbodies
- WQS are used to calculate effluent limitations
Summary

• PFAS are persistent
• Treatment technologies exist
• Best accepted strategy for contamination is to reduce PFAS at the source
• Scope Statements for groundwater and surface water standards go to the Natural Resources Board for approval (~2.5 year process if approved)
Questions?

Nate Willis
(608) 266-3221
nathaniel.willis@wisconsin.gov