Village of Twin Lakes Process Upgrades for Bio-P Removal

Overview

- What is phosphorus and why do we care?
- How can you remove phosphorus?
- Biological phosphorus removal
- Twin Lakes operations

Phosphorus

Phosphorus Regulation

- Technology based effluent limits
 - Typical = 1.0 mg/L
 - Alternative phosphorus limits (APL)
 - Biological maximum 2.0 mg/L
 - Economics variance
- Water quality-based effluent limits
 - Based upon target concentration in receiving water
 - Total Maximum Daily Load (TMDL)
 - As low as 0.100 0.075 mg/L for streams

Chemical Phosphorus Removal

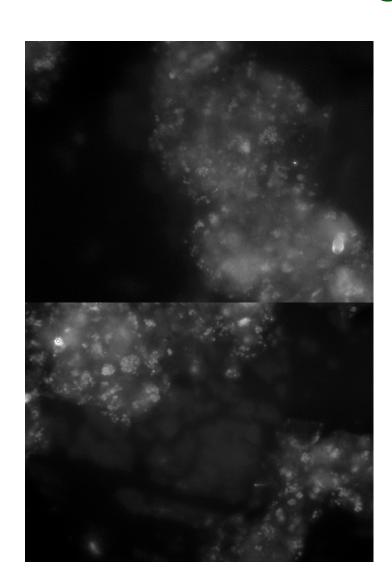
- Coagulant
 - Alum
 - Ferric Chloride
 - Ferric Sulfate
 - Poly aluminum chloride (PAC)
- Advantages
 - Simple
 - Lower capital cost (sometimes)
- Disadvantages
 - Sludge production
 - Operational costs
 - Chemical handling

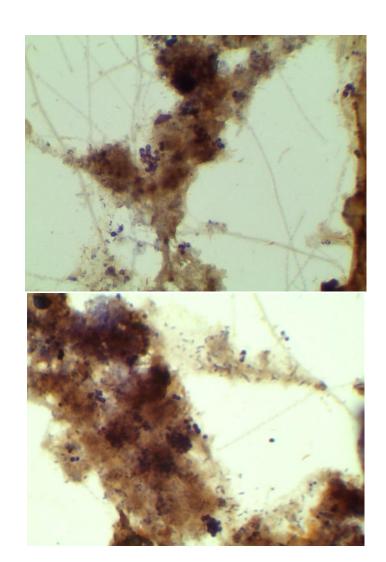
Biological Phosphorus Removal (BPR)

- Create an environment to select for organisms that will store phosphorus
- Requirements
 - Phosphorus
 - Readily biodegradable BOD in the form of volatile fatty acids
 - Cycling between anaerobic and aerobic environments

Biological Phosphorus Removal (BPR)

- Advantages
 - Low operational costs
 - Improved treatment performance
- Disadvantages
 - Capital cost
 - More complicated treatment
 - Temperamental



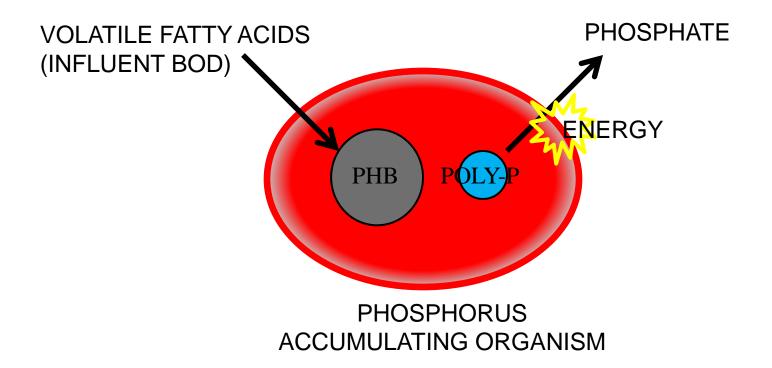

BPR Microbiology

- Phosphorus accumulating organisms (PAOs)
 - Store excess phosphorus inside cells
 - Release phosphorus for energy in anaerobic environment
 - Take in phosphorus in aerobic environment
- Identifying PAOs and biological phosphorus removal
 - Anaerobic batch testing
 - Staining techniques
 - DAPI
 - Florescence In-Situ Hybridization (FISH)
 - DNA sequencing

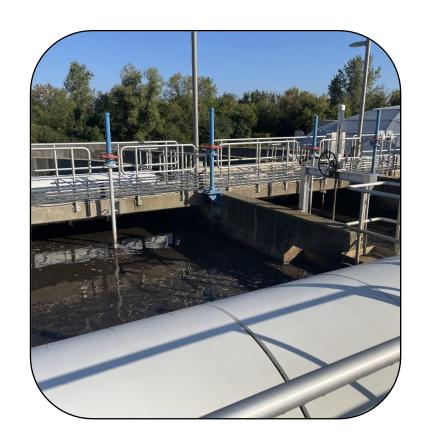
BPR Microbiology

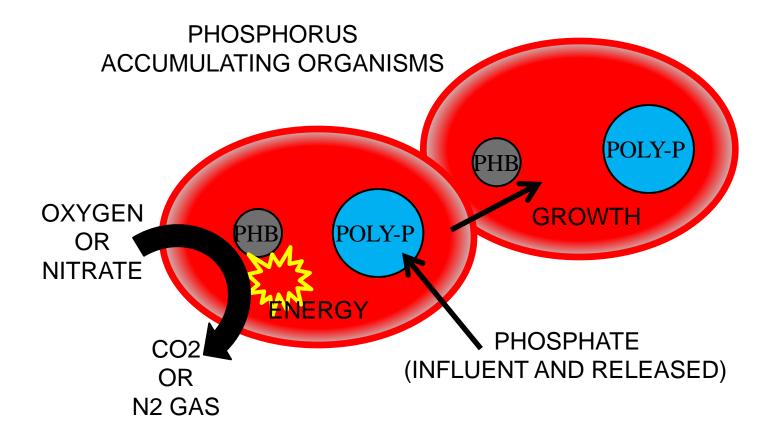
Influent Considerations

- BOD and phosphorus required for biological phosphorus removal to work
- BOD should be in readily biodegradable form
- Nitrate inhibits biological phosphorus removal
 - High influent ammonia will be converted to nitrate if nitrification occurs
- Frequency and quantity of inflow and infiltration (I&I)


Selector Basins

- Anaerobic environment
- VFA's formed through fermentation
- Organisms take in VFA's and store VFA's as PHB
- Phosphorus released to give PAO energy


Anaerobic Environment


Aeration Basins

- Stored PHB is consumed (BOD)
- Influent and released phosphorus is taken up to provide energy for future reactions
- Micro organisms grow and reproduce
- Higher phosphorus content in cells (>4% vs. 1% - 2%)

Aerobic Environment

Final Clarifiers, RAS, and WAS

- Phosphorus laden organisms settle
- Rapid sludge removal (avoid secondary release)
- Sludge wasting removes organisms & phosphorus from the system

Waste Activated Sludge **ORGANISMS RECYCLED TO SELECTOR PHOSPHORUS BASIN** ACCUMULATING ORGANISMS POLY-P POLY-P **SLUDGE** WASTING POLY-P "P" REMOVED FROM SYSTEM IN WASTE **SLUDGE**

Special Considerations for BPR

- Secondary release selector basins and clarifiers
- Nitrates RAS
- Recycle streams especially from digesters and sludge thickening
- ORP and DO control

Twin Lakes WWTF

Design Flow

Peak Hourly

• BOD

• TSS

• NH3

Phosphorus

1.076 MGD

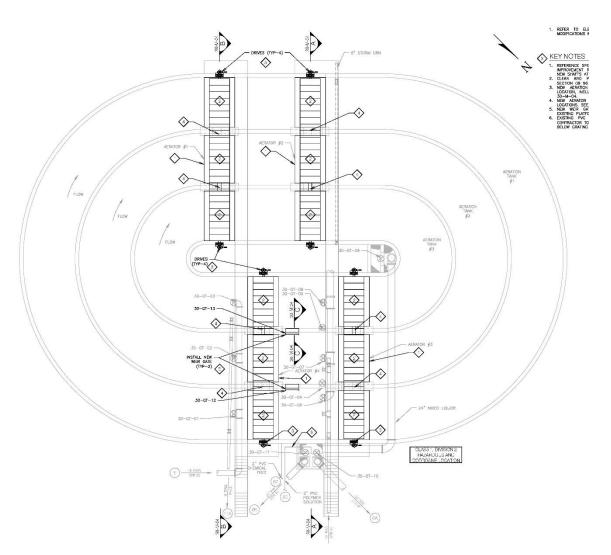
4.161 MGD

2,710 lbs/day

3,188 lbs/day

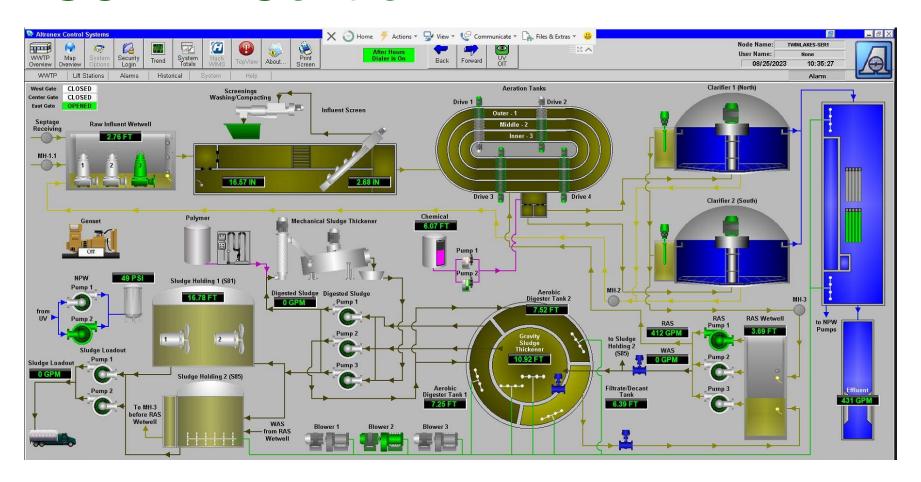
320 lbs/day

64 lbs/day



WWTF Site

3-Channel Oxidation Ditch



SCADA Control

- The old controls allowed the staff to monitor the basic operations at the plant but lacked any true control of plant operations.
 - Upgrades allow staff to control the aeration rate, RAS & WAS rates, DO & ORP setpoints, and other critical processes
 - Allows the staff to batch or stagger filtrate and supernatant return to avoid slugging the plant
 - Monitor and record these setpoints for future operational adjustments as well

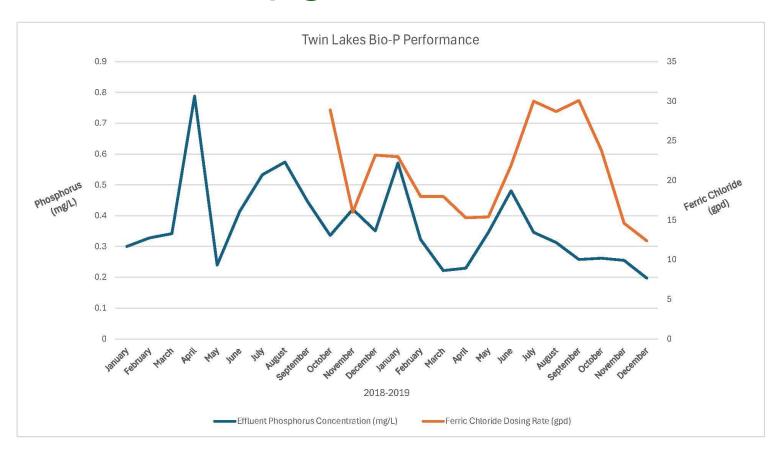
SCADA Control

RAS Control

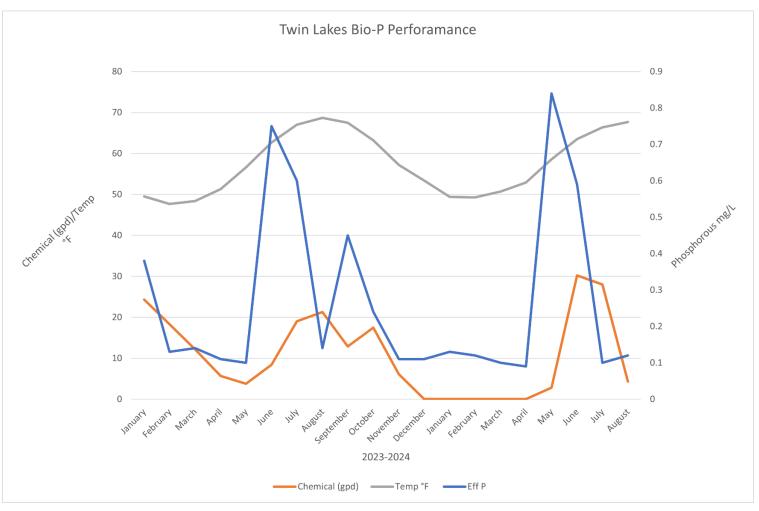
- Upgrades Included:
 - 3 new centrifugal dry-pit pumps with VFD control
 - Automated telescopic valves at the final clarifiers
 - SCADA control of the flow rates to allow operators to easily adjust the rates
 - Working flow meters!

Recycle Flows

- Sludge Thickening
 - Aerate the filtrate to control the ammonia spikes
 - This avoids upsetting the bio-P process



- Aerobic Digesters
 - Slow release of supernatant flow from digesters to avoid P spikes
 - In Twin Lakes, this is comingled with the RAS and other recycle flows



Before the Upgrades

- Effluent P varied from 0.2 to 0.8 mg/L on average
- Dosing 13- 30 gpd of ferric chloride

Bio-P Performance

Twin Lakes - Operating Results

- Effluent Results
 - BOD/SS < 5 mg/L
 - Ammonia < 0.5 mg/L</p>
 - Phosphorus < 0.3 mg/L</p>
- Small / seasonal alum usage for "P" removal
- No control on recycle streaming

Bio-P Lessons Learned

- Water Temperature Matters
 - Bio-P performance stalls when the influent water temp hits about 57°-59°
 - < 57° an ORP setting of -200 to -250 works great,
 and no alum addition is needed
 - < 59° an ORP setting of -300 works best
- Heavy phosphorus / nutrient loading hits or high
 I/I will cause bio-P to stumble, but not fall

Bio-P Lessons Learned

- Mind your plant maintenance
 - ORP / DO sensors to be cleaned
 - Cleaning a clarifier can impact your nutrient management and upset the "status quo"
 - Digesters, sludge dewatering, sludge storage are all potential impacts to the Bio-P health
- Monitor your effluent phosphorus closely as you can lose bio-P quickly
- Data management and trending are great tools for keeping track of all the variables

Summary

- Biological phosphorus removal can be a reliable alternative for phosphorus removal down to 0.5 mg/L or below
- Designs must incorporate flexibility to ensure systems can be optimized
 - Still need chemical backup for the inevitable upsets that will happen
- Process control allows ease of operation

Questions / Comments

Greg Droessler:

gdroessler@tcengineers.net

Greg Richter:

sewer@twinlakeswi.gov

