Hybrid Sand Filtration
Sand Filtration Basics

- As old as water treatment itself dating back to 2,000 – 4,000 BC
- Big stuff stays in, small stuff passes through
- Porous media – Depth Filtration
- Solids Build Up in Sand Bed then Need to be Removed/Cleaned
Hybrid Filtration Basics

Traditional filters backwash based upon solids, which can be better for performance, but require redundant filters and ancillary equipment.

Continuous filters backwash based on hydraulics, which may sacrifice some performance, but doesn’t require additional redundancy or ancillary equipment.

EcoWash is Hybrid of these two. EcoWash uses a continuous filter, but operates it based on solids like a traditional filter, giving the best of both worlds.

Dynasand® EcoWash™ A Hybrid Filter
Continuous Filtration

First upflow continuous backwash in America - 1978

A “Continuous” filter is an **upflow, deep bed, granular media filter with continuous backwash**

- **Up Flow** – Dirty water is introduced at the bottom of the sand bed
- **Deep Bed** – Process is defined as depth filtration as opposed to surface filtration
- **Granular Media** – Sand (0.9mm or 1.4mm depending on application)
- **Filter** – Big stuff stays in, small stuff goes out
- **Continuous Backwash** – Sand is cleaned during regular operation, i.e. no downtime
Process Animation
Hybrid Filtration Operation

• EcoWash utilizes a continuous filter but backwashes intermittently when needed as dictated by solids buildup in the filter.

• Backwashing Triggers – At all times, there are two set points. Whichever is reached first triggers a backwash
 – Headloss – When solids build up and head loss increases, a backwash is triggered
 – Time – A timer will limit the amount of time between backwashes regardless of solids

• Control Strategies
 – If the headloss trigger is set more aggressively than the timer, backwashes will be predominantly started based on solids in the filter.
 – If the timer set point is set more aggressively than the headloss set point, backwashes will be predominantly started based on time.

• Sequence of Operation During Backwash
 – Reject Valve is Opened
 – Upper Air Burst
 – Lower Air Burst
 – Normal Air flow
Hybrid Filtration Development

Obstacles to Development

Monitoring

- The Single Largest Obstacle to Overcome – Monitoring of Proper Operation
 - Continuous filters lift sand indirectly
 - Stopping and starting of sand must be monitored

- Monitoring Requirements:
 - Real time and continuous
 - Cost effective
 - Ensure sand washing has initiated
 - Ensure proper sand washing throughout cycle
 - Ensure reject valve closure during off cycles

- EcoWash Monitors the hydraulics within the filter via level sensors to ensure proper operation in real time and at all times
 - Ultrasonic level sensors are cheap and effective
 - Any changes to the filter operation effects filter hydraulic as specific points
 - Utilizing level sensors to monitor proper operation is process and cost effective – The secret of EcoWash
Obstacles to Development (continued)

Turbidity Spikes

- When sand cleaning is initiated, the air introduction into the airlift can cause release of solids from the bed.
- EcoWash utilizes a dual air burst to act as a “soft start.”
- By initiating the first air introduction higher in the airlift, the energy is dissipated within the airlift without effecting the sand bed.
Hybrid Filtration Results

Turbidity and Headloss Results – Pompano WRF Test

Turbidity (NTU)

- 2.6
- 2.4
- 2.2
- 2.0
- 1.8
- 1.6
- 1.4
- 1.2
- 1.0
- 0.8
- 0.6

Headloss (Inches)

- 35
- 30
- 25
- 20
- 15
- 10
- 5
- 0

Plant’s target

Continuous BW

EcoWash

Hybrid Filtration Results
Hybrid Filtration Results

Turbidity and TSS Results – Pompano WRF Test

June 2010
Turbidity

Turbidity (NTU)

June 2010
Total Suspended Solids

TSS (mg/L)
Hybrid Filtration Results
Turbidity and TSS Results – Pompano WRF Test

July 2010
Turbidity

Turbidity (NTU)

0 0.5 1 1.5 2 2.5 3
7/1/10 7/5/10 7/9/10 7/13/10 7/17/10 7/21/10 7/25/10 7/29/10
Plants Target
Continuous BW
EcoWash

July 2010
Total Suspended Solids

TSS (mg/L)

0 1 2 3 4 5
6/29/10 7/4/10 7/9/10 7/14/10 7/19/10 7/24/10 7/29/10
Plants Target
Continuous BW
EcoWash
Hybrid Filtration Results

ENR – Case Study

Laurel, DE – Full Scale DynaSand® EcoWash™ ENR installation

Plant data:
• Design 0.7 MGD ADF
• Current 0.35 MGD ADF
• 2 cells x 3 filters/cell
• CBF* Installed in Jul/2007
• Filters denitrifying since 2009
• Biolac W-Ox upstream
• EcoWash™ operating Feb 2011

*CBF: Continuous Backwash Filter
Hybrid Filtration Results
Laurel, DE – ENR Application

Laurel, DE WWTP - DynaSand® ENR Filtration System
Methanol Consumption

Continuous Backwash

EcoWash™ - Intermittent Backwash

Average

45% Reduction

Average

Month
Hybrid Filtration Results

Laurel, DE – ENR Application
Hybrid Filtration Results

Laurel, DE – ENR Application

![Bar chart showing Compressor Running Hours at Laurel, DE Full Scale DynaSand® EcoWash™ ENR Test. The chart compares Continuous BackWash and DynaSand® EcoWash™. The difference is indicated with a 90% reduction.](image)
Hybrid Filtration Results

Laurel, DE – ENR Application

![Graph showing reject flow reduction at Laurel, DE with full scale DynaSand® EcoWash™ ENR Test. The green bar represents a 90% reduction in reject flow compared to the orange bar for Continuous BackWash.](image)
Phosphorus Removal Fundamentals

- Phosphorus Removal
 - Highly Site Specific
 - Dependent Upon Speciation of Phosphorus within waste stream
 - Sand filters Remove TSS
 - Chemical Addition and Reactivity of Phosphorus outside of Sand filter Itself

Red Arrows Indicate Results of Upstream Processes and Chemical Addition
Removal Of TSS is Result of Filter
Hybrid Filtration Pilot

Pilot Goals and Schedule

• Definition of pilot success
 – Relative effectiveness of hybrid filtration
 – More effective removal of filterable P
 – Not absolute TP removal

• Pilot Schedule
 – Run Dual Stage Filter w/o EcoWash
 – Run Dual Stage Filter w/ EcoWash
 – Run Dual Stage Filter w/o Ecowah
 – Take data samples at effluent of each stage
Influent is released into the bottom of the sand bed and flows up through the sand. Stage 1 reject flow is Stage 2 feed. Stage 1 reject flow and Stage 2 reject flow combine to form Stage 1 & 2 combined reject flow. Final filtrate is the filtrate at the end of the process.
Hybrid Filtration Pilot Results

- Pilot began in late winter 2014
- Multiple weather related delays
 - Pipe bursts due to cold weather
 - Low influent phosphorus
 - High removals at Ferric doses over 25 mg/L precluded good comparative data
- Data gathering did not begin until August of 2014
- Two of weeks of usable data (with all controls to compare w/ and w/o EcoWash)
- Pilot and staff needed to be moved to other locations
- In Planning stages of utilizing new D2 EcoWash Installation in WI (Requesting Anonymity at this time) to continue testing
- Unofficial Results (OP4 Removal at 15 mg/L dose Ferric – Averages of composite data)

<table>
<thead>
<tr>
<th></th>
<th>Influent</th>
<th>Stage 1 Effluent</th>
<th>Stage 1 % Removal</th>
<th>Stage 2 Effluent</th>
<th>Stage 2 % Removal</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hybrid</td>
<td>0.24</td>
<td>0.08</td>
<td>66%</td>
<td>0.07</td>
<td>69%</td>
</tr>
<tr>
<td>Continuous</td>
<td>0.26</td>
<td>0.19</td>
<td>27%</td>
<td>0.18</td>
<td>31%</td>
</tr>
</tbody>
</table>
Questions

Omar Gadalla, PE
ogadalla@parkson.com
954-917-1880
Parkson Corporation
1401 West Cypress Creek Road
Suite 100
Fort Lauderdale, FL 33309