CONCEPTS IN CYBER SECURITY

GARY KNEELAND, CISSP
SENIOR CONSULTANT
CRITICAL INFRASTRUCTURE & SECURITY PRACTICE
OBJECTIVES

• FRAMEWORK FOR CYBERSECURITY
• CYBERSECURITY FUNCTIONS
• CYBERSECURITY CONTROLS
 • COMPARATIVE EXAMPLES
• REFERENCES
NIST FRAMEWORK UPDATE

FEB 12, 2013 EXECUTIVE ORDER

• EXECUTIVE ORDER 13636 – IMPROVING CRITICAL INFRASTRUCTURE CYBERSECURITY

FEB 12, 2014 FRAMEWORK FOR IMPROVING CRITICAL INFRASTRUCTURE CYBER SECURITY, V1.0

COMPENDIUM OF INFORMATIVE REFERENCES

• REVIEW OF OVER 320 NATIONAL & INTERNATIONAL STANDARDS, GUIDELINES, DIRECTIVES, BEST PRACTICES, MODELS, SPECIFICATIONS, POLICIES AND REGULATIONS, INCLUDING INPUT FROM:

 ANSI IEC OLF
 ISA NEI OPC
 NERC NIST SANS
 API NFPA SANS
 ISO OIG TIA
NIST FRAMEWORK CONCEPTS

THE FRAMEWORK **COMPLEMENTS**, AND **DOES NOT REPLACE**, AN ORGANIZATION’S EXISTING BUSINESS OR CYBERSECURITY RISK MANAGEMENT PROCESS AND CYBERSECURITY PROGRAM. RATHER, THE ORGANIZATION CAN USE ITS CURRENT PROCESSES AND LEVERAGE THE FRAMEWORK TO IDENTIFY OPPORTUNITIES TO IMPROVE AN ORGANIZATION’S CYBERSECURITY RISK MANAGEMENT. ALTERNATIVELY, AN ORGANIZATION WITHOUT AN EXISTING CYBERSECURITY PROGRAM CAN USE THE FRAMEWORK AS A REFERENCE WHEN ESTABLISHING ONE.

KEY CONCEPTS

- FRAMEWORK CORE
- FRAMEWORK IMPLEMENTATION TIERS
- FRAMEWORK PROFILE
NIST FRAMEWORK CONCEPTS

CORE
- FUNCTIONS
- CATEGORIES
- SUBCATEGORIES
- INFORMATIVE REFERENCE

TIER
- 0 - PARTIAL
- 1 - RISK INFORMED
- 2 - REPEATABLE
- 3 - ADAPTIVE

PROFILE
- ESTABLISH A ROADMAP

Framework for Improving Critical Infrastructure Cybersecurity, Version 1.0, February 12, 2014
FRAMEWORK CORE

<table>
<thead>
<tr>
<th>Function</th>
<th>Category</th>
<th>Subcategory</th>
<th>Informative Reference(s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>IDENTIFY</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PROTECT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DETECT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RESPOND</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RECOVER</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Framework for Improving Critical Infrastructure Cybersecurity, Version 1.0, February 12, 2014
NIST FRAMEWORK FUNCTIONS

IDENTIFY

• DEVELOP THE ORGANIZATIONAL UNDERSTANDING TO MANAGE CYBERSECURITY RISK TO SYSTEMS, ASSETS, DATA, AND CAPABILITIES.

• THE ACTIVITIES IN THE IDENTIFY FUNCTION ARE FOUNDATIONAL FOR EFFECTIVE USE OF THE FRAMEWORK. UNDERSTANDING THE BUSINESS CONTEXT, THE RESOURCES THAT SUPPORT CRITICAL FUNCTIONS, AND THE RELATED CYBERSECURITY RISKS ENABLES AN ORGANIZATION TO FOCUS AND PRIORITIZE ITS EFFORTS, CONSISTENT WITH ITS RISK MANAGEMENT STRATEGY AND BUSINESS NEEDS. EXAMPLES OF OUTCOME CATEGORIES WITHIN THIS FUNCTION INCLUDE: ASSET MANAGEMENT; BUSINESS ENVIRONMENT; GOVERNANCE; RISK ASSESSMENT; AND RISK MANAGEMENT STRATEGY.
NIST FRAMEWORK
CYBERSECURITY CONTROLS

IDENTIFY

PLANT REFERENCE
• POLICIES
• ROLES & RESPONSIBILITIES
• RISK ASSESSMENT
• EQUIPMENT LIST
• AREA / PROCESS CLASSIFICATION
• P&ID’S

→ CYBER CONTROL
• POLICIES
• ROLES & RESPONSIBILITIES
• VULNERABILITY ASSESSMENT
• ASSET / APPLICATION LIST
• ASSET / APPLICATION CLASSIFICATION
• NETWORK DIAGRAMS
NIST FRAMEWORK FUNCTIONS

• DEVELOP AND IMPLEMENT THE APPROPRIATE SAFEGUARDS TO ENSURE DELIVERY OF CRITICAL INFRASTRUCTURE SERVICES.

• THE PROTECT FUNCTION SUPPORTS THE ABILITY TO LIMIT OR CONTAIN THE IMPACT OF A POTENTIAL CYBERSECURITY EVENT. EXAMPLES OF OUTCOME CATEGORIES WITHIN THIS FUNCTION INCLUDE: ACCESS CONTROL; AWARENESS AND TRAINING; DATA SECURITY; INFORMATION PROTECTION PROCESSES AND PROCEDURES; MAINTENANCE; AND PROTECTIVE TECHNOLOGY.
NIST FRAMEWORK
CYBERSECURITY CONTROLS

PLANT REFERENCE
• TRAINING
• BACKGROUND CHECKS
• GUARDS
• CARD KEYS / BADGES
• ESCORTED ACCESS
• KEYED LOCKS / LOTO
• LEAST PRIVILEGE ACCESS
• PROCEDURES
• JOB SAFETY ASSESSMENT

CYBER CONTROL
• TRAINING
• ANTI-VIRUS & PATCHING
• FIREWALLS
• CARD KEYS / BADGES
• ESCORTED ACCESS
• LOGICAL ACCESS CONTROL
• LEAST PRIVILEGE ACCESS
• PROCEDURES
• CONFIGURATION CHANGE MANAGEMENT
NIST FRAMEWORK FUNCTIONS

DETECT

• DEVELOP AND IMPLEMENT THE APPROPRIATE ACTIVITIES TO IDENTIFY THE OCCURRENCE OF A CYBERSECURITY EVENT.

• THE DETECT FUNCTION ENABLES TIMELY DISCOVERY OF CYBERSECURITY EVENTS. EXAMPLES OF OUTCOME CATEGORIES WITHIN THIS FUNCTION INCLUDE: ANOMALIES AND EVENTS; SECURITY CONTINUOUS MONITORING; AND DETECTION PROCESSES.
NIST FRAMEWORK
CYBERSECURITY CONTROLS

PLANT REFERENCE
- LOGS / OPERATOR ROUNDS
- CAMERA / MOTION DETECT
- ANALYZERS
- ALARMS / ALERTS
- UNAUTHORIZED PERSONNEL INTERVENTION

DETECT

CYBER CONTROL
- LOGS, SECURITY INFORMATION & EVENT MONITOR (SIEM)
- INTRUSION DETECTION
- NETWORK PERFORMANCE MONITORING
- ALARMS / ALERTS
- ROGUE DEVICE DETECTION
NIST FRAMEWORK FUNCTIONS

• DEVELOP AND IMPLEMENT THE APPROPRIATE ACTIVITIES TO TAKE ACTION REGARDING A DETECTED CYBERSECURITY EVENT.

• THE RESPOND FUNCTION SUPPORTS THE ABILITY TO CONTAIN THE IMPACT OF A POTENTIAL CYBERSECURITY EVENT. EXAMPLES OF OUTCOME CATEGORIES WITHIN THIS FUNCTION INCLUDE: RESPONSE PLANNING; COMMUNICATIONS; ANALYSIS; MITIGATION; AND IMPROVEMENTS.
NIST FRAMEWORK
CYBERSECURITY CONTROLS

PLANT REFERENCE
- EMERGENCY RESPONSE PLANNING
- EXECUTE EMERGENCY RESPONSE PLAN
- NOTIFY AUTHORITIES
- ISOLATE & PRESERVE
- INITIATE RECOVERY
- UPDATE RESPONSE PLAN

CYBER CONTROL
- EMERGENCY RESPONSE PLANNING
- EXECUTE EMERGENCY RESPONSE PLAN
- NOTIFY AUTHORITIES
- ISOLATE & PRESERVE
- INITIATE RECOVERY
- UPDATE RESPONSE PLAN
DEVELOP AND IMPLEMENT THE APPROPRIATE ACTIVITIES TO MAINTAIN PLANS FOR RESILIENCE AND TO RESTORE ANY CAPABILITIES OR SERVICES THAT WERE IMPAIRED DUE TO A CYBERSECURITY EVENT.

THE RECOVER FUNCTION SUPPORTS TIMELY RECOVERY TO NORMAL OPERATIONS TO REDUCE THE IMPACT FROM A CYBERSECURITY EVENT. EXAMPLES OF OUTCOME CATEGORIES WITHIN THIS FUNCTION INCLUDE: RECOVERY PLANNING; IMPROVEMENTS; AND COMMUNICATIONS.
NIST FRAMEWORK
CYBERSECURITY CONTROLS

PLANT REFERENCE
• BYPASS
• IMPLEMENT SPARE
• REPAIR/REBUILD/REPLACE
• RESET

CYBER CONTROL
• ALTERNATE CONTROLS
• IMPLEMENT SPARE
• REPAIR/REBUILD/REPLACE
• RESET

RECOVER
GET HELP

• REGULATORY BODY
• RESEARCHERS
• VENDORS
• CONSULTANTS

American Water Works Association (AWWA)

National Institute of Standards and Technology (NIST)
Computer Security Division
www.nist.gov/itl/csd/

United States Computer Emergency Readiness Team (US-CERT)
www.us-cert.gov

Critical Infrastructure & Security Practice (CISP)
iom.invensys.com/cybersecurity
gary.kneeland@schneider-electric.com
Cybersecurity Guidance & Tool

Cybersecurity is the top threat facing business and critical infrastructure in the United States, according to reports and testimony from the National Intelligence Agency, the Federal Bureau of Investigation and the Department of Homeland Security.

Based on recommendations in the 2008 Roadmap to Secure Industrial Control Systems in the Water Sector, AWWA's Water Utility Control took action to develop a cybersecurity resource designed to provide actionable information for utility owners/operators based on their use of process control systems. That is the purpose and objective of the Process Control System Security Guidance for the Water Sector (PDF) and the supporting Use-Case Tool.

These AWWA resources complement the national-level actions that have resulted from Executive Order 13636 - Improving Critical Infrastructure Cybersecurity, signed by President Obama on Feb. 12, 2013. EO 13636 directs the National Institute of Standards and Technology to work with stakeholders to develop a voluntary framework for reducing cyber risks, recognizing that national and economic security depends on the reliable functioning of critical infrastructure.

The AWWA Cybersecurity Guidance & Tool represent a voluntary, sector-specific approach that supports the NIST Cybersecurity Framework. The Cybersecurity Guidance & Tool are living documents, and it is expected that further revisions and enhancements will be implemented based on input from users.

All in all, this requires a commitment to action as part of an all-hazards risk management strategy as recommended in ANSI/AWWA ES8: Security Practices for Operations and Management.

- **Access Cybersecurity Tool**
 Login is required to access this resource, and registering a login username and password is free.
- **Download Cybersecurity Guidance (PDF)**

Access additional AWWA resources on Utility Security and on Emergency Preparedness.
Cybersecurity Tool

A use case is an elemental pattern of behavior as described by the user of a system. The use cases presented in the AWWA Cybersecurity Guidance Tool are intended to reflect the manner in which a user's Process Control System is configured and/or the manner in which the organization utilizes the Process Control System. The operational characteristics associated with each use case represent different types and degrees of cybersecurity risk. The guidance tool determines the appropriate cybersecurity controls and priorities based on the use cases selected by the user.

Prior to using the Guidance Tool, the user should review specific information pertaining to the organization's Process Control Systems, including device inventory, network architecture, software functionality, physical facility and plant process architecture. With some utilities, this knowledge is spread among several individuals and/or departments; certain aspects of this detailed knowledge may be held by vendors or external service providers. Conducting a planning meeting with the appropriate resources and stakeholders prior to using the Guidance Tool should be considered.

There is a wide variety of different products and system configurations used for water sector Process Control Systems. As such, some of the use cases provided may not match a user's specific situation exactly. In that case, the user should select the use cases which most closely match the utility's systems and procedures.

Use Cases: (check all that apply)

- **Architecture**
 - AR1: Dedicated network. All network and communications infrastructure is dedicated exclusively to SCADA. No connection to enterprise networks.
 - AR2: Shared WAN. Wide-area network communications infrastructure is shared (controls: physical (media) separation, VPN, VLAN, firewall).
 - AR3: Shared LAN. Local-area network communications (within facility) is shared (controls: VLAN, firewall).

- **Network Management**
 - NM1: Local network management. Access to configure network infrastructure located in immediate vicinity of user (serial or network).
 - NM2: Plant network management. Access to configure network infrastructure located on same facility from centralized location.
 - NM3: Remote network management. Access to configure network infrastructure located in another physical facility.

- **Program Access**
 - PA1: Outbound messaging. Automated, non-interactive sending of SMTP, SMS or other outbound alarms and messaging from system.
PA2: **Outbound file transfer.** Interactive sending of files from system to other locations.

PA3: **Inbound file transfer.** Interactive receiving of files from other locations to system.

PA4: **Software updates.** Automated, non-interactive retrieval of licensing, OS updates, anti-virus signatures and other system data from other locations to system.

PA5: **Data exchange.** Automated, non-interactive exchange of data (e.g. database-to-database exchange, ftp or other external data) with systems located externally. (Implies full-time connection.)

PA6: **Network monitoring.** Automated, non-interactive exchange of network management data (e.g. syslog, SNMP traps, SNMP polling) with systems located external to system. (Implies full-time connection.)

PLC Programming and Maintenance

PLC1: **Local PLC programming and maintenance.** Access to PLC programming and maintenance is local to device (serial or network).

PLC2: **Plant PLC programming and maintenance.** Access to PLC programming and maintenance from a centralized on-site location.

PLC3: **Remote PLC programming and maintenance.** Access to PLC programming and maintenance from an off-site location.

User Access

UA1: **Control room system access with control.** Access to system with full read-write capability from "control room" (on-plant, physically secured) location.

UA2: **Plant system access with control.** Access to system with full read-write capability from on-plant location, not physically secured (e.g. plant floor).

UA3: **Remote system access with control.** Access from location outside "control room" environment and located outside the physical perimeter of the facility.

UA4: **Remote system access with view-only.** Access to system with limited read-only/view capability from location outside "control room" environment and located outside the physical perimeter of the facility.

UA5: **Remote system access with web view.** Access to web displays of system data with read-only/view capability from location outside "control room" environment and located outside the physical perimeter of the facility.

By clicking "Generate Report" you accept AWWA's terms and conditions.
THANK YOU